Cargando…

High-resolution European daily soil moisture derived with machine learning (2003–2020)

Machine learning (ML) has emerged as a novel tool for generating large-scale land surface data in recent years. ML can learn the relationship between input and target, e.g. meteorological variables and in-situ soil moisture, and then estimate soil moisture across space and time, independently of pri...

Descripción completa

Detalles Bibliográficos
Autores principales: O, Sungmin, Orth, Rene, Weber, Ulrich, Park, Seon Ki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663700/
https://www.ncbi.nlm.nih.gov/pubmed/36376361
http://dx.doi.org/10.1038/s41597-022-01785-6
Descripción
Sumario:Machine learning (ML) has emerged as a novel tool for generating large-scale land surface data in recent years. ML can learn the relationship between input and target, e.g. meteorological variables and in-situ soil moisture, and then estimate soil moisture across space and time, independently of prior physics-based knowledge. Here we develop a high-resolution (0.1°) daily soil moisture dataset in Europe (SoMo.ml-EU) using Long Short-Term Memory trained with in-situ measurements. The resulting dataset covers three vertical layers and the period 2003–2020. Compared to its previous version with a lower spatial resolution (0.25°), it shows a closer agreement with independent in-situ data in terms of temporal variation, demonstrating the enhanced usefulness of in-situ observations when processed jointly with high-resolution meteorological data. Regional comparison with other gridded datasets also demonstrates the ability of SoMo.ml-EU in describing the variability of soil moisture, including drought conditions. As a result, our new dataset will benefit regional studies requiring high-resolution observation-based soil moisture, such as hydrological and agricultural analyses.