Cargando…
High-resolution European daily soil moisture derived with machine learning (2003–2020)
Machine learning (ML) has emerged as a novel tool for generating large-scale land surface data in recent years. ML can learn the relationship between input and target, e.g. meteorological variables and in-situ soil moisture, and then estimate soil moisture across space and time, independently of pri...
Autores principales: | O, Sungmin, Orth, Rene, Weber, Ulrich, Park, Seon Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663700/ https://www.ncbi.nlm.nih.gov/pubmed/36376361 http://dx.doi.org/10.1038/s41597-022-01785-6 |
Ejemplares similares
-
Global soil moisture data derived through machine learning trained with in-situ measurements
por: O., Sungmin, et al.
Publicado: (2021) -
A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution
por: Zheng, Chaolei, et al.
Publicado: (2023) -
A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015
por: Naz, Bibi S., et al.
Publicado: (2020) -
Global long term daily 1 km surface soil moisture dataset with physics informed machine learning
por: Han, Qianqian, et al.
Publicado: (2023) -
High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region
por: Nayak, H. P., et al.
Publicado: (2018)