Cargando…
Influence of single-cell RNA sequencing data integration on the performance of differential gene expression analysis
Large-scale comprehensive single-cell experiments are often resource-intensive and require the involvement of many laboratories and/or taking measurements at various times. This inevitably leads to batch effects, and systematic variations in the data that might occur due to different technology plat...
Autores principales: | Kujawa, Tomasz, Marczyk, Michał, Polanska, Joanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663917/ https://www.ncbi.nlm.nih.gov/pubmed/36386846 http://dx.doi.org/10.3389/fgene.2022.1009316 |
Ejemplares similares
-
Importance of SNP Dependency Correction and Association Integration for Gene Set Analysis in Genome-Wide Association Studies
por: Marczyk, Michal, et al.
Publicado: (2021) -
Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
por: Marczyk, Michal, et al.
Publicado: (2013) -
Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods
por: Dal Molin, Alessandra, et al.
Publicado: (2017) -
Identifying Differentially Expressed Genes of Zero Inflated Single Cell RNA Sequencing Data Using Mixed Model Score Tests
por: He, Zhiqiang, et al.
Publicado: (2021) -
Identification of differentially expressed genes at the single-cell level and prognosis prediction through bulk RNA sequencing data in breast cancer
por: Chen, Hanghang, et al.
Publicado: (2022)