Cargando…
A review on fake news detection 3T’s: typology, time of detection, taxonomies
Fake news has become an industry on its own, where users paid to write fake news and create clickbait content to allure the audience. Apparently, the detection of fake news is a crucial problem and several studies have proposed machine-learning-based techniques to combat fake news. Existing surveys...
Autores principales: | Rastogi, Shubhangi, Bansal, Divya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664051/ https://www.ncbi.nlm.nih.gov/pubmed/36406145 http://dx.doi.org/10.1007/s10207-022-00625-3 |
Ejemplares similares
-
Detection of fake news and hate speech for Ethiopian languages: a systematic review of the approaches
por: Demilie, Wubetu Barud, et al.
Publicado: (2022) -
Fighting the Fake: A Forensic Linguistic Analysis to Fake News Detection
por: Sousa-Silva, Rui
Publicado: (2022) -
Fake news stance detection using selective features and FakeNET
por: Aljrees, Turki, et al.
Publicado: (2023) -
Disinformation detection on social media: An integrated approach
por: Rastogi, Shubhangi, et al.
Publicado: (2022) -
A comprehensive Benchmark for fake news detection
por: Galli, Antonio, et al.
Publicado: (2022)