Cargando…

Spatiotemporal Analysis of Osteoblast Morphology and Wnt Signal‐Induced Osteoblast Reactivation during Bone Modeling in Vitro

Bone nodule formation by differentiating osteoblasts is considered an in vitro model that mimics bone modeling. However, the details of osteoblast behavior and matrix production during bone nodule formation are poorly understood. Here, we present a spatiotemporal analysis system for evaluating osteo...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsuji, Naoki, Sakamoto, Tomoaki, Hoshi, Kazuto, Hikita, Atsuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664540/
https://www.ncbi.nlm.nih.gov/pubmed/36398107
http://dx.doi.org/10.1002/jbm4.10689
Descripción
Sumario:Bone nodule formation by differentiating osteoblasts is considered an in vitro model that mimics bone modeling. However, the details of osteoblast behavior and matrix production during bone nodule formation are poorly understood. Here, we present a spatiotemporal analysis system for evaluating osteoblast morphology and matrix production during bone modeling in vitro via two‐photon microscopy. Using this system, a change in osteoblast morphology from cuboidal to flat was observed during the formation of mineralized nodules, and this change was quantified. Areas with high bone formation were densely populated with cuboidal osteoblasts, which were characterized by blebs, protruding structures on their cell membranes. Cuboidal osteoblasts with blebs were highly mobile, and osteoblast blebs exhibited a polar distribution. Furthermore, mimicking romosozumab treatment, when differentiated flattened osteoblasts were stimulated with BIO, a GSK3β inhibitor, they were reactivated to acquire a cuboidal morphology with blebs on their membranes and produced more matrix than nonstimulated cells. Our analysis system is a powerful tool for evaluating the cell morphology and function of osteoblasts during bone modeling. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.