Cargando…
Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal
BACKGROUND: The number of studies applying machine learning (ML) to predict acute kidney injury (AKI) has grown steadily over the past decade. We assess and critically appraise the state of the art in ML models for AKI prediction, considering performance, methodological soundness, and applicability....
Autores principales: | Vagliano, Iacopo, Chesnaye, Nicholas C, Leopold, Jan Hendrik, Jager, Kitty J, Abu-Hanna, Ameen, Schut, Martijn C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664575/ https://www.ncbi.nlm.nih.gov/pubmed/36381375 http://dx.doi.org/10.1093/ckj/sfac181 |
Ejemplares similares
-
Adverse drug event detection using natural language processing: A scoping review of supervised learning methods
por: Murphy, Rachel M., et al.
Publicado: (2023) -
Incorrect application of the KDIGO acute kidney injury staging criteria
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2021) -
Acute kidney injury associated with nephrotoxic drugs in critically ill patients: a multicenter cohort study using electronic health record data
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2023) -
Blood pressure and kidney outcomes in patients with severely decreased glomerular filtration rate: a nationwide observational cohort study
por: Al-Sodany, Ehab, et al.
Publicado: (2022) -
Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2023)