Cargando…

Disinfectant dodecyl dimethyl benzyl ammonium chloride (DDBAC) disrupts gut microbiota, phospholipids, and calcium signaling in honeybees (Apis mellifera) at an environmentally relevant level

One of the impacts of the Coronavirus disease 2019 (COVID-19) pandemic has been a profound increase in the application amounts of disinfectants. Dodecyl dimethyl benzyl ammonium chloride (DDBAC) is a widely used disinfectant, yet its hazards to non-target species remain largely unknown. We are unawa...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qiangqiang, Xue, Xiaofeng, Qi, Suzhen, Zhao, Liuwei, Zhang, Wenwen, Fan, Man, Wu, Liming, Wang, Miao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664769/
https://www.ncbi.nlm.nih.gov/pubmed/36402032
http://dx.doi.org/10.1016/j.envint.2022.107639
Descripción
Sumario:One of the impacts of the Coronavirus disease 2019 (COVID-19) pandemic has been a profound increase in the application amounts of disinfectants. Dodecyl dimethyl benzyl ammonium chloride (DDBAC) is a widely used disinfectant, yet its hazards to non-target species remain largely unknown. We are unaware of any studies assessing DDBAC’s impacts on honeybee, a pollinator species that is a useful indicator of environmental pollution essential for many forms of agricultural production. Here, we assessed the potentially negative effects of DDBAC on honeybees. After conducting a formal toxicity evaluation of DDBAC on honeybee mortality, we detected an accumulation of DDBAC in the honeybee midgut. We subsequently studied the midgut tissues of honeybees exposed to sub-lethal concentrations of DDBAC: histopathological examination revealed damage to midgut tissue upon DDBAC exposure, microbiome analysis showed a decreased abundance of beneficial midgut microbiota, lipidomics analysis revealed a significant reduction in cell membrane phospholipids with known functions in signal transduction, and a transcriptome analysis detected altered expression of genes involved in calcium signaling pathways (that variously function in calcium absorption, muscle contraction, and neurotransmission). Thus, our study establishes that DDBAC impacts honeybee midgut functions at multiple levels. Our study represents an early warning about the hazards of DDBAC and appeals for the proper stewardship of DDBAC to ensure the protection of our ecological environment.