Cargando…
A Predictive Machine Learning Tool for Asthma Exacerbations: Results from a 12-Week, Open-Label Study Using an Electronic Multi-Dose Dry Powder Inhaler with Integrated Sensors
PURPOSE: Machine learning models informed by sensor data inputs have the potential to provide individualized predictions of asthma deterioration. This study aimed to determine if data from an integrated digital inhaler could be used to develop a machine learning model capable of predicting impending...
Autores principales: | Lugogo, Njira L, DePietro, Michael, Reich, Michael, Merchant, Rajan, Chrystyn, Henry, Pleasants, Roy, Granovsky, Lena, Li, Thomas, Hill, Tanisha, Brown, Randall W, Safioti, Guilherme |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664923/ https://www.ncbi.nlm.nih.gov/pubmed/36387836 http://dx.doi.org/10.2147/JAA.S377631 |
Ejemplares similares
-
Investigating the Accuracy of the Digihaler, a New Electronic Multidose Dry-Powder Inhaler, in Measuring Inhalation Parameters
por: Chrystyn, Henry, et al.
Publicado: (2022) -
The Diskus™: a review of its position among dry powder inhaler devices
por: Chrystyn, H
Publicado: (2007) -
Concept review of dry powder inhalers: correct interpretation of published data
por: Price, David, et al.
Publicado: (2015) -
Estimating Inhaled Corticosteroid Exposure from Short-Acting β(2)-Agonist–Inhaled Corticosteroid Rescue
por: Lugogo, Njira, et al.
Publicado: (2023) -
Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions
por: Canonica, Giorgio Walter, et al.
Publicado: (2015)