Cargando…

Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos

[Image: see text] Supramolecular polymers are attractive scaffolds for use as nanocarriers in drug delivery thanks to their modularity and easy fabrication; however, a molecular view into their in vivo behavior is lacking. Herein, we prepare fluorescent squaramide-based supramolecular polymer nanopa...

Descripción completa

Detalles Bibliográficos
Autores principales: Saez Talens, Victorio, Arias-Alpizar, Gabriela, Makurat, D. M. M., Davis, Joyal, Bussmann, Jeroen, Kros, Alexander, Kieltyka, Roxanne E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665412/
https://www.ncbi.nlm.nih.gov/pubmed/32083854
http://dx.doi.org/10.1021/acs.biomac.9b01318
Descripción
Sumario:[Image: see text] Supramolecular polymers are attractive scaffolds for use as nanocarriers in drug delivery thanks to their modularity and easy fabrication; however, a molecular view into their in vivo behavior is lacking. Herein, we prepare fluorescent squaramide-based supramolecular polymer nanoparticles that range from fibers to spheres while maintaining their surface chemistry and near-neutral surface charge by a co-assembly approach involving a sulfo-cyanine-labeled monomer to track their in vivo biodistribution behavior and clearance in optically transparent zebrafish embryos. Evasion of macrophages, localization of the fibrillar aggregates in the caudal vein, and association with scavenger endothelial cells are observed. The interaction of the fibrillar supramolecular nanoparticles with the caudal vein is abrogated in gene-edited zebrafish lacking Stabilin-2, a receptor analogously found in the mammalian liver, providing a molecular view into their interaction with scavenger endothelial cells. We further show that this interaction can be tuned based on the choice of monomer and its resultant self-assembly.