Cargando…
GeneNetTools: tests for Gaussian graphical models with shrinkage
MOTIVATION: Gaussian graphical models (GGMs) are network representations of random variables (as nodes) and their partial correlations (as edges). GGMs overcome the challenges of high-dimensional data analysis by using shrinkage methodologies. Therefore, they have become useful to reconstruct gene r...
Autores principales: | Bernal, Victor, Soancatl-Aguilar, Venustiano, Bulthuis, Jonas, Guryev, Victor, Horvatovich, Peter, Grzegorczyk, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665865/ https://www.ncbi.nlm.nih.gov/pubmed/36179082 http://dx.doi.org/10.1093/bioinformatics/btac657 |
Ejemplares similares
-
Exact hypothesis testing for shrinkage-based Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2019) -
The ‘un-shrunk’ partial correlation in Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2021) -
Visual Data Exploration for Balance Quantification in Real-Time During Exergaming
por: Soancatl Aguilar, Venustiano, et al.
Publicado: (2017) -
Drug sensitivity prediction with normal inverse Gaussian shrinkage informed by external data
por: Münch, Magnus M., et al.
Publicado: (2020) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019)