Cargando…
Integrating phylogenetic and functional data in microbiome studies
MOTIVATION: Microbiome functional data are frequently analyzed to identify associations between microbial functions (e.g. genes) and sample groups of interest. However, it is challenging to distinguish between different possible explanations for variation in community-wide functional profiles by con...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665866/ https://www.ncbi.nlm.nih.gov/pubmed/36179077 http://dx.doi.org/10.1093/bioinformatics/btac655 |
Sumario: | MOTIVATION: Microbiome functional data are frequently analyzed to identify associations between microbial functions (e.g. genes) and sample groups of interest. However, it is challenging to distinguish between different possible explanations for variation in community-wide functional profiles by considering functions alone. To help address this problem, we have developed POMS, a package that implements multiple phylogeny-aware frameworks to more robustly identify enriched functions. RESULTS: The key contribution is an extended balance-tree workflow that incorporates functional and taxonomic information to identify functions that are consistently enriched in sample groups across independent taxonomic lineages. Our package also includes a workflow for running phylogenetic regression. Based on simulated data we demonstrate that these approaches more accurately identify gene families that confer a selective advantage compared with commonly used tools. We also show that POMS in particular can identify enriched functions in real-world metagenomics datasets that are potential targets of strong selection on multiple members of the microbiome. AVAILABILITY AND IMPLEMENTATION: These workflows are freely available in the POMS R package at https://github.com/gavinmdouglas/POMS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|