Cargando…
Differentiation of breast lesions on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using deep transfer learning based on DenseNet201
In order to achieve better performance, artificial intelligence is used in breast cancer diagnosis. In this study, we evaluated the efficacy of different fine-tuning strategies of deep transfer learning (DTL) based on the DenseNet201 model to differentiate malignant from benign lesions on breast dyn...
Autores principales: | Meng, Mingzhu, Zhang, Ming, Shen, Dong, He, Guangyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666147/ https://www.ncbi.nlm.nih.gov/pubmed/36397422 http://dx.doi.org/10.1097/MD.0000000000031214 |
Ejemplares similares
-
A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning
por: Lu, Tao, et al.
Publicado: (2021) -
Author Correction: A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning
por: Lu, Tao, et al.
Publicado: (2021) -
An Efficient DenseNet-Based Deep Learning Model for Malware Detection
por: Hemalatha, Jeyaprakash, et al.
Publicado: (2021) -
Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
por: Wang, Long, et al.
Publicado: (2023) -
COVID-19 Diagnosis via DenseNet and Optimization of Transfer Learning Setting
por: Zhang, Yu-Dong, et al.
Publicado: (2021)