Cargando…
Probabilistic solvers enable a straight-forward exploration of numerical uncertainty in neuroscience models
Understanding neural computation on the mechanistic level requires models of neurons and neuronal networks. To analyze such models one typically has to solve coupled ordinary differential equations (ODEs), which describe the dynamics of the underlying neural system. These ODEs are solved numerically...
Autores principales: | Oesterle, Jonathan, Krämer, Nicholas, Hennig, Philipp, Berens, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666333/ https://www.ncbi.nlm.nih.gov/pubmed/35932442 http://dx.doi.org/10.1007/s10827-022-00827-7 |
Ejemplares similares
-
Correction to: Probabilistic solvers enable a straight-forward exploration of numerical uncertainty in neuroscience models
por: Oesterle, Jonathan, et al.
Publicado: (2023) -
Probabilistic numerics and uncertainty in computations
por: Hennig, Philipp, et al.
Publicado: (2015) -
The Numerical analysis problem solver /
Publicado: (1983) -
Dependability modelling under uncertainty: an imprecise probabilistic approach
por: Limbourg, Philipp
Publicado: (2008) -
Visualising magnetic fields: numerical equation solvers in action
por: Beeteson, John Stuart
Publicado: (2001)