Cargando…

Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion

Diverse communities of groundwater-dwelling organisms (i.e., stygobionts) are important for human wellbeing; however, we lack an understanding of the factors driving their distributions, making it difficult to protect many at-risk species. Therefore, our study objective was to determine the landscap...

Descripción completa

Detalles Bibliográficos
Autores principales: Mouser, Joshua B., Brewer, Shannon K., Niemiller, Matthew L., Mollenhauer, Robert, Van Den Bussche, Ronald A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666451/
https://www.ncbi.nlm.nih.gov/pubmed/36379975
http://dx.doi.org/10.1038/s41598-022-21791-3
Descripción
Sumario:Diverse communities of groundwater-dwelling organisms (i.e., stygobionts) are important for human wellbeing; however, we lack an understanding of the factors driving their distributions, making it difficult to protect many at-risk species. Therefore, our study objective was to determine the landscape factors related to the occurrence of cavefishes and cave crayfishes in the Ozark Highlands ecoregion, USA. We sampled cavefishes and cave crayfishes at 61 sampling units using both visual and environmental DNA surveys. We then modeled occurrence probability in relation to lithology and human disturbance while accounting for imperfect detection. Our results indicated that occurrence probability of cave crayfishes was negatively associated with human disturbance, whereas there was a weak positive relationship between cavefish occurrence and disturbance. Both cavefishes and cave crayfishes were more likely to occur in limestone rather than dolostone lithology. Our results indicate structuring factors are related to the distribution of these taxa, but with human disturbance as a prevalent modifier of distributions for cave crayfishes. Limiting human alteration near karst features may be warranted to promote the persistence of some stygobionts. Moreover, our results indicate current sampling efforts are inadequate to detect cryptic species; therefore, expanding sampling may be needed to develop effective conservation actions.