Cargando…
Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton
Site-specific treatment of weeds in agricultural landscapes has been gaining importance in recent years due to economic savings and minimal impact on the environment. Different detection methods have been developed and tested for precision weed management systems, but recent developments in neural n...
Autores principales: | Sapkota, Bishwa B., Popescu, Sorin, Rajan, Nithya, Leon, Ramon G., Reberg-Horton, Chris, Mirsky, Steven, Bagavathiannan, Muthukumar V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666527/ https://www.ncbi.nlm.nih.gov/pubmed/36379963 http://dx.doi.org/10.1038/s41598-022-23399-z |
Ejemplares similares
-
Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments
por: Sapkota, Bishwa B., et al.
Publicado: (2022) -
History of Herbicide-Resistant Traits in Cotton in the U.S. and the Importance of Integrated Weed Management for Technology Stewardship
por: Vulchi, Rohith, et al.
Publicado: (2022) -
Rate of crop‐weed hybridization in Sorghum bicolor × Sorghum halepense is influenced by genetic background, pollen load, and the environment
por: Sias, Cynthia, et al.
Publicado: (2023) -
Deep learning for detecting herbicide weed control spectrum in turfgrass
por: Jin, Xiaojun, et al.
Publicado: (2022) -
Creating Predictive Weed Emergence Models Using Repeat Photography and Image Analysis
por: Reinhardt Piskackova, Theresa, et al.
Publicado: (2020)