Cargando…
Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks
Residue-residue distance information is useful for predicting tertiary structures of protein monomers or quaternary structures of protein complexes. Many deep learning methods have been developed to predict intra-chain residue-residue distances of monomers accurately, but few methods can accurately...
Autores principales: | Guo, Zhiye, Liu, Jian, Skolnick, Jeffrey, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666547/ https://www.ncbi.nlm.nih.gov/pubmed/36379943 http://dx.doi.org/10.1038/s41467-022-34600-2 |
Ejemplares similares
-
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Correction to: DeepDist: real‑value inter‑residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Distance‐based reconstruction of protein quaternary structures from inter‐chain contacts
por: Soltanikazemi, Elham, et al.
Publicado: (2021) -
Multi-head attention-based U-Nets for predicting protein domain boundaries using 1D sequence features and 2D distance maps
por: Mahmud, Sajid, et al.
Publicado: (2022) -
Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction
por: Chen, Chen, et al.
Publicado: (2021)