Cargando…
Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials
Accurate diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) is a significant challenge. Misdiagnosis has significant negative medical side effects. Due to the complex nature of this disorder, there is no computational expert system for diagnosis. Recently, automatic diagnosis of ADHD by ma...
Autores principales: | Ghasemi, Elham, Ebrahimi, Mansour, Ebrahimie, Esmaeil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666608/ https://www.ncbi.nlm.nih.gov/pubmed/36408064 http://dx.doi.org/10.1007/s11571-021-09746-2 |
Ejemplares similares
-
Automated and ERP-Based Diagnosis of Attention-Deficit Hyperactivity Disorder in Children
por: Jahanshahloo, Hossein R., et al.
Publicado: (2017) -
Probabilistic Learning in Children With Attention-Deficit/Hyperactivity Disorder
por: Luman, Marjolein, et al.
Publicado: (2020) -
Word Recognition Memory in Adults with Attention-Deficit/Hyperactivity Disorder as Reflected by Event-Related Potentials
por: Prox-Vagedes, Vanessa, et al.
Publicado: (2011) -
Cognitive potential of children with attention deficit and hyperactivity disorder
por: Romero, Ana Carla Leite, et al.
Publicado: (2015) -
Dynamical properties of elemental metabolism distinguish attention deficit hyperactivity disorder from autism spectrum disorder
por: Austin, Christine, et al.
Publicado: (2019)