Cargando…
Deep learning-based transcriptome model predicts survival of T-cell acute lymphoblastic leukemia
Identifying subgroups of T-cell acute lymphoblastic leukemia (T-ALL) with poor survival will significantly influence patient treatment options and improve patient survival expectations. Current efforts to predict T-ALL survival expectations in multiple patient cohorts are lacking. A deep learning (D...
Autores principales: | Zhang, Lenghe, Zhou, Lijuan, Wang, Yulian, Li, Chao, Liao, Pengjun, Zhong, Liye, Geng, Suxia, Lai, Peilong, Du, Xin, Weng, Jianyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666679/ https://www.ncbi.nlm.nih.gov/pubmed/36408189 http://dx.doi.org/10.3389/fonc.2022.1057153 |
Ejemplares similares
-
Phenotype of mesenchymal stem cells from patients with myelodyplastic syndrome maybe partly modulated by decitabine
por: Pang, Yanbin, et al.
Publicado: (2019) -
Identification and Validation of a Prognostic Risk-Scoring Model Based on Ferroptosis-Associated Cluster in Acute Myeloid Leukemia
por: Wang, Jinghua, et al.
Publicado: (2022) -
Analysis of the expression of PHTF1 and related genes in acute lymphoblastic leukemia
por: Huang, Xin, et al.
Publicado: (2015) -
Attenuation of cGVHD by C5a/C5aR blockade is associated with increased frequency of Treg
por: Wang, Yulian, et al.
Publicado: (2017) -
A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia
por: Weng, Jianyu, et al.
Publicado: (2018)