Cargando…

Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1

The stress induced protein NQO1 can participate in a wide range of biological pathways which are dependent upon the interaction of NQO1 with protein targets. Many of the protein-protein interactions involving NQO1 have been shown to be regulated by the pyridine nucleotide redox balance. NQO1 can mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Siegel, David, Harris, Peter S., Michel, Cole R., de Cabo, Rafael, Fritz, Kristofer S., Ross, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667027/
https://www.ncbi.nlm.nih.gov/pubmed/36408211
http://dx.doi.org/10.3389/fphar.2022.1015642
_version_ 1784831636565655552
author Siegel, David
Harris, Peter S.
Michel, Cole R.
de Cabo, Rafael
Fritz, Kristofer S.
Ross, David
author_facet Siegel, David
Harris, Peter S.
Michel, Cole R.
de Cabo, Rafael
Fritz, Kristofer S.
Ross, David
author_sort Siegel, David
collection PubMed
description The stress induced protein NQO1 can participate in a wide range of biological pathways which are dependent upon the interaction of NQO1 with protein targets. Many of the protein-protein interactions involving NQO1 have been shown to be regulated by the pyridine nucleotide redox balance. NQO1 can modify its conformation as a result of redox changes in pyridine nucleotides and sites on the C-terminal and helix seven regions of NQO1 have been identified as potential areas that may be involved in redox-dependent protein-protein interactions. Since post-translational modifications can modify the functionality of proteins, we examined whether redox-dependent conformational changes induced in NQO1 would alter lysine acetylation. Recombinant NQO1 was incubated with and without NADH then acetylated non-enzymatically by acetic anhydride or S-acetylglutathione (Ac-GSH). NQO1 acetylation was determined by immunoblot and site-specific lysine acetylation was quantified by mass spectrometry (MS). NQO1 was readily acetylated by acetic anhydride and Ac-GSH. Interestingly, despite a large number of lysine residues (9%) in NQO1 only a small subset of lysines were acetylated and the majority of these were located in or near the functional C-terminal or helix seven regions. Reduction of NQO1 by NADH prior to acetylation resulted in almost complete protection of NQO1 from lysine acetylation as confirmed by immunoblot analysis and MS. Lysines located within the redox-active C-terminus and helix seven regions were readily acetylated when NQO1 was in an oxidized conformation but were protected from acetylation when NQO1 was in the reduced conformation. To investigate regulatory mechanisms of enzymatic deacetylation, NQO1 was acetylated by Ac-GSH then exposed to purified sirtuins (SIRT 1-3) or histone deacetylase 6 (HDAC6). NQO1 could be deacetylated by all sirtuin isoforms and quantitative MS analysis performed using SIRT2 revealed very robust deacetylation of NQO1, specifically at K(262) and K(271) in the C-terminal region. No deacetylation of NQO1 by HDAC6 was detected. These data demonstrate that the same subset of key lysine residues in the C-terminal and helix seven regions of NQO1 undergo redox dependent acetylation and are regulated by sirtuin-mediated deacetylation.
format Online
Article
Text
id pubmed-9667027
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-96670272022-11-17 Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1 Siegel, David Harris, Peter S. Michel, Cole R. de Cabo, Rafael Fritz, Kristofer S. Ross, David Front Pharmacol Pharmacology The stress induced protein NQO1 can participate in a wide range of biological pathways which are dependent upon the interaction of NQO1 with protein targets. Many of the protein-protein interactions involving NQO1 have been shown to be regulated by the pyridine nucleotide redox balance. NQO1 can modify its conformation as a result of redox changes in pyridine nucleotides and sites on the C-terminal and helix seven regions of NQO1 have been identified as potential areas that may be involved in redox-dependent protein-protein interactions. Since post-translational modifications can modify the functionality of proteins, we examined whether redox-dependent conformational changes induced in NQO1 would alter lysine acetylation. Recombinant NQO1 was incubated with and without NADH then acetylated non-enzymatically by acetic anhydride or S-acetylglutathione (Ac-GSH). NQO1 acetylation was determined by immunoblot and site-specific lysine acetylation was quantified by mass spectrometry (MS). NQO1 was readily acetylated by acetic anhydride and Ac-GSH. Interestingly, despite a large number of lysine residues (9%) in NQO1 only a small subset of lysines were acetylated and the majority of these were located in or near the functional C-terminal or helix seven regions. Reduction of NQO1 by NADH prior to acetylation resulted in almost complete protection of NQO1 from lysine acetylation as confirmed by immunoblot analysis and MS. Lysines located within the redox-active C-terminus and helix seven regions were readily acetylated when NQO1 was in an oxidized conformation but were protected from acetylation when NQO1 was in the reduced conformation. To investigate regulatory mechanisms of enzymatic deacetylation, NQO1 was acetylated by Ac-GSH then exposed to purified sirtuins (SIRT 1-3) or histone deacetylase 6 (HDAC6). NQO1 could be deacetylated by all sirtuin isoforms and quantitative MS analysis performed using SIRT2 revealed very robust deacetylation of NQO1, specifically at K(262) and K(271) in the C-terminal region. No deacetylation of NQO1 by HDAC6 was detected. These data demonstrate that the same subset of key lysine residues in the C-terminal and helix seven regions of NQO1 undergo redox dependent acetylation and are regulated by sirtuin-mediated deacetylation. Frontiers Media S.A. 2022-11-02 /pmc/articles/PMC9667027/ /pubmed/36408211 http://dx.doi.org/10.3389/fphar.2022.1015642 Text en Copyright © 2022 Siegel, Harris, Michel, de Cabo, Fritz and Ross. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Siegel, David
Harris, Peter S.
Michel, Cole R.
de Cabo, Rafael
Fritz, Kristofer S.
Ross, David
Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1
title Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1
title_full Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1
title_fullStr Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1
title_full_unstemmed Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1
title_short Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1
title_sort redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein nqo1
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667027/
https://www.ncbi.nlm.nih.gov/pubmed/36408211
http://dx.doi.org/10.3389/fphar.2022.1015642
work_keys_str_mv AT siegeldavid redoxstateandthesirtuindeacetylasesaremajorfactorsthatregulatetheacetylationstatusofthestressproteinnqo1
AT harrispeters redoxstateandthesirtuindeacetylasesaremajorfactorsthatregulatetheacetylationstatusofthestressproteinnqo1
AT michelcoler redoxstateandthesirtuindeacetylasesaremajorfactorsthatregulatetheacetylationstatusofthestressproteinnqo1
AT decaborafael redoxstateandthesirtuindeacetylasesaremajorfactorsthatregulatetheacetylationstatusofthestressproteinnqo1
AT fritzkristofers redoxstateandthesirtuindeacetylasesaremajorfactorsthatregulatetheacetylationstatusofthestressproteinnqo1
AT rossdavid redoxstateandthesirtuindeacetylasesaremajorfactorsthatregulatetheacetylationstatusofthestressproteinnqo1