Cargando…
A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
Healthcare systems are hampered by incomplete and fragmented patient health records. Record linkage is widely accepted as a solution to improve the quality and completeness of patient records. However, there does not exist a systematic approach for manually reviewing patient records to create gold s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667171/ https://www.ncbi.nlm.nih.gov/pubmed/36305781 http://dx.doi.org/10.1093/jamia/ocac175 |
_version_ | 1784831667451461632 |
---|---|
author | Gupta, Agrayan K Kasthurirathne, Suranga N Xu, Huiping Li, Xiaochun Ruppert, Matthew M Harle, Christopher A Grannis, Shaun J |
author_facet | Gupta, Agrayan K Kasthurirathne, Suranga N Xu, Huiping Li, Xiaochun Ruppert, Matthew M Harle, Christopher A Grannis, Shaun J |
author_sort | Gupta, Agrayan K |
collection | PubMed |
description | Healthcare systems are hampered by incomplete and fragmented patient health records. Record linkage is widely accepted as a solution to improve the quality and completeness of patient records. However, there does not exist a systematic approach for manually reviewing patient records to create gold standard record linkage data sets. We propose a robust framework for creating and evaluating manually reviewed gold standard data sets for measuring the performance of patient matching algorithms. Our 8-point approach covers data preprocessing, blocking, record adjudication, linkage evaluation, and reviewer characteristics. This framework can help record linkage method developers provide necessary transparency when creating and validating gold standard reference matching data sets. In turn, this transparency will support both the internal and external validity of recording linkage studies and improve the robustness of new record linkage strategies. |
format | Online Article Text |
id | pubmed-9667171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96671712022-11-17 A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms Gupta, Agrayan K Kasthurirathne, Suranga N Xu, Huiping Li, Xiaochun Ruppert, Matthew M Harle, Christopher A Grannis, Shaun J J Am Med Inform Assoc Brief Communications Healthcare systems are hampered by incomplete and fragmented patient health records. Record linkage is widely accepted as a solution to improve the quality and completeness of patient records. However, there does not exist a systematic approach for manually reviewing patient records to create gold standard record linkage data sets. We propose a robust framework for creating and evaluating manually reviewed gold standard data sets for measuring the performance of patient matching algorithms. Our 8-point approach covers data preprocessing, blocking, record adjudication, linkage evaluation, and reviewer characteristics. This framework can help record linkage method developers provide necessary transparency when creating and validating gold standard reference matching data sets. In turn, this transparency will support both the internal and external validity of recording linkage studies and improve the robustness of new record linkage strategies. Oxford University Press 2022-10-28 /pmc/articles/PMC9667171/ /pubmed/36305781 http://dx.doi.org/10.1093/jamia/ocac175 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Brief Communications Gupta, Agrayan K Kasthurirathne, Suranga N Xu, Huiping Li, Xiaochun Ruppert, Matthew M Harle, Christopher A Grannis, Shaun J A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
title | A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
title_full | A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
title_fullStr | A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
title_full_unstemmed | A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
title_short | A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
title_sort | framework for a consistent and reproducible evaluation of manual review for patient matching algorithms |
topic | Brief Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667171/ https://www.ncbi.nlm.nih.gov/pubmed/36305781 http://dx.doi.org/10.1093/jamia/ocac175 |
work_keys_str_mv | AT guptaagrayank aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT kasthurirathnesurangan aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT xuhuiping aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT lixiaochun aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT ruppertmatthewm aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT harlechristophera aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT grannisshaunj aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT guptaagrayank frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT kasthurirathnesurangan frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT xuhuiping frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT lixiaochun frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT ruppertmatthewm frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT harlechristophera frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms AT grannisshaunj frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms |