Cargando…

A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms

Healthcare systems are hampered by incomplete and fragmented patient health records. Record linkage is widely accepted as a solution to improve the quality and completeness of patient records. However, there does not exist a systematic approach for manually reviewing patient records to create gold s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Agrayan K, Kasthurirathne, Suranga N, Xu, Huiping, Li, Xiaochun, Ruppert, Matthew M, Harle, Christopher A, Grannis, Shaun J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667171/
https://www.ncbi.nlm.nih.gov/pubmed/36305781
http://dx.doi.org/10.1093/jamia/ocac175
_version_ 1784831667451461632
author Gupta, Agrayan K
Kasthurirathne, Suranga N
Xu, Huiping
Li, Xiaochun
Ruppert, Matthew M
Harle, Christopher A
Grannis, Shaun J
author_facet Gupta, Agrayan K
Kasthurirathne, Suranga N
Xu, Huiping
Li, Xiaochun
Ruppert, Matthew M
Harle, Christopher A
Grannis, Shaun J
author_sort Gupta, Agrayan K
collection PubMed
description Healthcare systems are hampered by incomplete and fragmented patient health records. Record linkage is widely accepted as a solution to improve the quality and completeness of patient records. However, there does not exist a systematic approach for manually reviewing patient records to create gold standard record linkage data sets. We propose a robust framework for creating and evaluating manually reviewed gold standard data sets for measuring the performance of patient matching algorithms. Our 8-point approach covers data preprocessing, blocking, record adjudication, linkage evaluation, and reviewer characteristics. This framework can help record linkage method developers provide necessary transparency when creating and validating gold standard reference matching data sets. In turn, this transparency will support both the internal and external validity of recording linkage studies and improve the robustness of new record linkage strategies.
format Online
Article
Text
id pubmed-9667171
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-96671712022-11-17 A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms Gupta, Agrayan K Kasthurirathne, Suranga N Xu, Huiping Li, Xiaochun Ruppert, Matthew M Harle, Christopher A Grannis, Shaun J J Am Med Inform Assoc Brief Communications Healthcare systems are hampered by incomplete and fragmented patient health records. Record linkage is widely accepted as a solution to improve the quality and completeness of patient records. However, there does not exist a systematic approach for manually reviewing patient records to create gold standard record linkage data sets. We propose a robust framework for creating and evaluating manually reviewed gold standard data sets for measuring the performance of patient matching algorithms. Our 8-point approach covers data preprocessing, blocking, record adjudication, linkage evaluation, and reviewer characteristics. This framework can help record linkage method developers provide necessary transparency when creating and validating gold standard reference matching data sets. In turn, this transparency will support both the internal and external validity of recording linkage studies and improve the robustness of new record linkage strategies. Oxford University Press 2022-10-28 /pmc/articles/PMC9667171/ /pubmed/36305781 http://dx.doi.org/10.1093/jamia/ocac175 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Brief Communications
Gupta, Agrayan K
Kasthurirathne, Suranga N
Xu, Huiping
Li, Xiaochun
Ruppert, Matthew M
Harle, Christopher A
Grannis, Shaun J
A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
title A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
title_full A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
title_fullStr A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
title_full_unstemmed A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
title_short A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
title_sort framework for a consistent and reproducible evaluation of manual review for patient matching algorithms
topic Brief Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667171/
https://www.ncbi.nlm.nih.gov/pubmed/36305781
http://dx.doi.org/10.1093/jamia/ocac175
work_keys_str_mv AT guptaagrayank aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT kasthurirathnesurangan aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT xuhuiping aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT lixiaochun aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT ruppertmatthewm aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT harlechristophera aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT grannisshaunj aframeworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT guptaagrayank frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT kasthurirathnesurangan frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT xuhuiping frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT lixiaochun frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT ruppertmatthewm frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT harlechristophera frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms
AT grannisshaunj frameworkforaconsistentandreproducibleevaluationofmanualreviewforpatientmatchingalgorithms