Cargando…

PAN-cODE: COVID-19 forecasting using conditional latent ODEs

The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths around the world and revealed the need for data-driven models of pandemic spread. Accurate pandemic caseload forecasting allows informed policy decisions on the adoption of non-pharmaceutical interventions (NPIs) to reduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Ruian, Zhang, Haoran, Morris, Quaid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667190/
https://www.ncbi.nlm.nih.gov/pubmed/36047844
http://dx.doi.org/10.1093/jamia/ocac160
Descripción
Sumario:The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths around the world and revealed the need for data-driven models of pandemic spread. Accurate pandemic caseload forecasting allows informed policy decisions on the adoption of non-pharmaceutical interventions (NPIs) to reduce disease transmission. Using COVID-19 as an example, we present Pandemic conditional Ordinary Differential Equation (PAN-cODE), a deep learning method to forecast daily increases in pandemic infections and deaths. By using a deep conditional latent variable model, PAN-cODE can generate alternative caseload trajectories based on alternate adoptions of NPIs, allowing stakeholders to make policy decisions in an informed manner. PAN-cODE also allows caseload estimation for regions that are unseen during model training. We demonstrate that, despite using less detailed data and having fully automated training, PAN-cODE’s performance is comparable to state-of-the-art methods on 4-week-ahead and 6-week-ahead forecasting. Finally, we highlight the ability of PAN-cODE to generate realistic alternative outcome trajectories on select US regions.