Cargando…
Machine learning methods for estimating bent photonic crystal fiber based SPR sensor properties
In the recent years, the use of machine learning approaches in optical devices and fibers is increasing. However, most methods concentrate on the use of Artificial Neural Network (ANN) methods due to the ability of automatically fitting to the problem. In this work, a classical non-linear regression...
Autores principales: | Kalyoncu, Cem, Yasli, Ahmet, Ademgil, Huseyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667262/ https://www.ncbi.nlm.nih.gov/pubmed/36406686 http://dx.doi.org/10.1016/j.heliyon.2022.e11582 |
Ejemplares similares
-
Photonic Crystal Fiber SPR Liquid Sensor Based on Elliptical Detective Channel
por: Yan, Xin, et al.
Publicado: (2021) -
SPR Sensor Based on a Concave Photonic Crystal Fiber Structure with MoS(2)/Au Layers
por: Guo, Xiaotong, et al.
Publicado: (2023) -
Numerical Analysis of Coronavirus Detection Using Photonic Crystal Fibre–Based SPR Sensor
por: Gupta, Ankur, et al.
Publicado: (2023) -
Bent Fiber Sensor for Preservative Detection in Milk
por: Saracoglu, Omer Galip, et al.
Publicado: (2016) -
A Polarization-Independent Fiber-Optic SPR Sensor
por: Li, Songquan, et al.
Publicado: (2018)