Cargando…
Analysis of optimal lockdown in integral economic–epidemic model
We analyze the optimal lockdown in an economic–epidemic model with realistic infectiveness distribution. The model is described by Volterra integral equations and accurately depicts the COVID-19 infectivity pattern from clinical data. A maximum principle is derived, and a qualitative dynamic analysi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667431/ https://www.ncbi.nlm.nih.gov/pubmed/36405251 http://dx.doi.org/10.1007/s00199-022-01469-7 |
Sumario: | We analyze the optimal lockdown in an economic–epidemic model with realistic infectiveness distribution. The model is described by Volterra integral equations and accurately depicts the COVID-19 infectivity pattern from clinical data. A maximum principle is derived, and a qualitative dynamic analysis of the optimal lockdown problem is provided over finite and infinite horizons. We analytically prove and economically justify the possibility of an endemic scenario when the infection rate begins to climb after the lockdown ends. |
---|