Cargando…
A Bayesian generative neural network framework for epidemic inference problems
The reconstruction of missing information in epidemic spreading on contact networks can be essential in the prevention and containment strategies. The identification and warning of infectious but asymptomatic individuals (i.e., contact tracing), the well-known patient-zero problem, or the inference...
Autores principales: | Biazzo, Indaco, Braunstein, Alfredo, Dall’Asta, Luca, Mazza, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667449/ https://www.ncbi.nlm.nih.gov/pubmed/36385141 http://dx.doi.org/10.1038/s41598-022-20898-x |
Ejemplares similares
-
Epidemic mitigation by statistical inference from contact tracing data
por: Baker, Antoine, et al.
Publicado: (2021) -
Predicting epidemic evolution on contact networks from partial observations
por: Bindi, Jacopo, et al.
Publicado: (2017) -
Inference in conditioned dynamics through causality restoration
por: Braunstein, Alfredo, et al.
Publicado: (2023) -
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
por: Altarelli, Fabrizio, et al.
Publicado: (2015) -
Statics and Dynamics of Selfish Interactions in Distributed Service Systems
por: Altarelli, Fabrizio, et al.
Publicado: (2015)