Cargando…
An extended approach for the generalized powered uniform distribution
A new uniform distribution model, generalized powered uniform distribution (GPUD), which is based on incorporating the parameter k into the probability density function (pdf) associated with the power of random variable values and includes a powered mean operator, is introduced in this paper. From t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667452/ https://www.ncbi.nlm.nih.gov/pubmed/36405879 http://dx.doi.org/10.1007/s00180-022-01296-3 |
Sumario: | A new uniform distribution model, generalized powered uniform distribution (GPUD), which is based on incorporating the parameter k into the probability density function (pdf) associated with the power of random variable values and includes a powered mean operator, is introduced in this paper. From this new model, the shape properties of the pdf as well as the higher-order moments, the moment generating function, the model that simulates the GPUD and other important statistics can be derived. This approach allows the generalization of the distribution presented by Jayakumar and Sankaran (2016) through the new [Formula: see text] distribution. Two sets of real data related to COVID-19 and bladder cancer were tested to demonstrate the proposed model’s potential. The maximum likelihood method was used to calculate the parameter estimators by applying the maxLik package in R. The results showed that this new model is more flexible and useful than other comparable models. |
---|