Cargando…
MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning
The joint use of multiple drugs may cause unintended drug-drug interactions (DDIs) and result in adverse consequence to the patients. Accurate identification of DDI types can not only provide hints to avoid these accidental events, but also elaborate the underlying mechanisms by how DDIs occur. Seve...
Autores principales: | Lin, Shenggeng, Chen, Weizhi, Chen, Gengwang, Zhou, Songchi, Wei, Dong-Qing, Xiong, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667597/ https://www.ncbi.nlm.nih.gov/pubmed/36380384 http://dx.doi.org/10.1186/s13321-022-00659-8 |
Ejemplares similares
-
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019) -
Establishment of porcine and monkey colonic organoids for drug toxicity study
por: Li, Haonan, et al.
Publicado: (2021) -
CNN-DDI: a learning-based method for predicting drug–drug interactions using convolution neural networks
por: Zhang, Chengcheng, et al.
Publicado: (2022) -
Methodology for evaluating Insite: Canada's first medically supervised safer injection facility for injection drug users
por: Wood, Evan, et al.
Publicado: (2004) -
iDrug: a web-accessible and interactive drug discovery and design platform
por: Wang, Xia, et al.
Publicado: (2014)