Cargando…
A dual deep neural network for auto-delineation in cervical cancer radiotherapy with clinical validation
BACKGROUND: Artificial intelligence (AI) algorithms are capable of automatically detecting contouring boundaries in medical images. However, the algorithms impact on clinical practice of cervical cancer are unclear. We aimed to develop an AI-assisted system for automatic contouring of the clinical t...
Autores principales: | Nie, Shihong, Wei, Yuanfeng, Zhao, Fen, Dong, Ya, Chen, Yan, Li, Qiaoqi, Du, Wei, Li, Xin, Yang, Xi, Li, Zhiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667653/ https://www.ncbi.nlm.nih.gov/pubmed/36380378 http://dx.doi.org/10.1186/s13014-022-02157-5 |
Ejemplares similares
-
Three‐dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images
por: Ding, Yi, et al.
Publicado: (2022) -
Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
por: Wang, Zhi, et al.
Publicado: (2020) -
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
por: Ma, Chen‐Ying, et al.
Publicado: (2021) -
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
por: Chung, Seung Yeun, et al.
Publicado: (2023) -
Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy
por: Shi, Feng, et al.
Publicado: (2022)