Cargando…
Uncertainty quantification for predictions of atomistic neural networks
The value of uncertainty quantification on predictions for trained neural networks (NNs) on quantum chemical reference data is quantitatively explored. For this, the architecture of the PhysNet NN was suitably modified and the resulting model (PhysNet-DER) was evaluated with different metrics to qua...
Autores principales: | Vazquez-Salazar, Luis Itza, Boittier, Eric D., Meuwly, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667919/ https://www.ncbi.nlm.nih.gov/pubmed/36425481 http://dx.doi.org/10.1039/d2sc04056e |
Ejemplares similares
-
Neural network potentials for chemistry: concepts, applications and prospects
por: Käser, Silvan, et al.
Publicado: (2022) -
Uncertainty Quantification for Mechanical Properties of Polyethylene Based on Fully Atomistic Model
por: Vu-Bac, Nam, et al.
Publicado: (2019) -
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
por: Ryu, Seongok, et al.
Publicado: (2019) -
An introduction to Bayesian neural networks and uncertainty quantification in neural networks
por: Talpini, Jacopo
Publicado: (2023) -
Into the dynamics of rotaxanes at atomistic resolution
por: Leanza, Luigi, et al.
Publicado: (2023)