Cargando…
Early detection of norovirus outbreak using machine learning methods in South Korea
BACKGROUND: The norovirus is a major cause of acute gastroenteritis at all ages but particularly has a high chance of affecting children under the age of five. Given that the outbreak of norovirus in Korea is seasonal, it is important to try and predict the start and end of norovirus outbreaks. METH...
Autores principales: | Lee, Sieun, Cho, Eunhae, Jang, Geunsoo, Kim, Sangil, Cho, Giphil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668130/ https://www.ncbi.nlm.nih.gov/pubmed/36383630 http://dx.doi.org/10.1371/journal.pone.0277671 |
Ejemplares similares
-
Forecasting COVID-19 cases by assessing control-intervention effects in Republic of Korea: A statistical modeling approach
por: Lee, Hyojung, et al.
Publicado: (2022) -
Estimating severe fever with thrombocytopenia syndrome transmission using machine learning methods in South Korea
por: Cho, Giphil, et al.
Publicado: (2021) -
Cost-effectiveness analysis of COVID-19 variants effects in an age-structured model
por: Cho, Giphil, et al.
Publicado: (2023) -
Molecular epidemiology of norovirus in South Korea
por: Lee, Sung-Geun, et al.
Publicado: (2015) -
Norovirus outbreaks occurred in different settings in the Republic of Korea
por: Cho, Hae-Wol, et al.
Publicado: (2015)