Cargando…
Inferring parameters of cancer evolution in chronic lymphocytic leukemia
As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex genomic profile. We make use of this heterogeneity to derive simple, analytic estimates of parameters driving carcinogenesis and reconstruct the timeline of selective events following initiation of an individ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668150/ https://www.ncbi.nlm.nih.gov/pubmed/36331987 http://dx.doi.org/10.1371/journal.pcbi.1010677 |
_version_ | 1784831852377276416 |
---|---|
author | Lee, Nathan D. Bozic, Ivana |
author_facet | Lee, Nathan D. Bozic, Ivana |
author_sort | Lee, Nathan D. |
collection | PubMed |
description | As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex genomic profile. We make use of this heterogeneity to derive simple, analytic estimates of parameters driving carcinogenesis and reconstruct the timeline of selective events following initiation of an individual cancer, where two longitudinal samples are available for sequencing. Using stochastic computer simulations of cancer growth, we show that we can accurately estimate mutation rate, time before and after a driver event occurred, and growth rates of both initiated cancer cells and subsequently appearing subclones. We demonstrate that in order to obtain accurate estimates of mutation rate and timing of events, observed mutation counts should be corrected to account for clonal mutations that occurred after the founding of the tumor, as well as sequencing coverage. Chronic lymphocytic leukemia (CLL), which often does not require treatment for years after diagnosis, presents an optimal system to study the untreated, natural evolution of cancer cell populations. When we apply our methodology to reconstruct the individual evolutionary histories of CLL patients, we find that the parental leukemic clone typically appears within the first fifteen years of life. |
format | Online Article Text |
id | pubmed-9668150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96681502022-11-17 Inferring parameters of cancer evolution in chronic lymphocytic leukemia Lee, Nathan D. Bozic, Ivana PLoS Comput Biol Research Article As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex genomic profile. We make use of this heterogeneity to derive simple, analytic estimates of parameters driving carcinogenesis and reconstruct the timeline of selective events following initiation of an individual cancer, where two longitudinal samples are available for sequencing. Using stochastic computer simulations of cancer growth, we show that we can accurately estimate mutation rate, time before and after a driver event occurred, and growth rates of both initiated cancer cells and subsequently appearing subclones. We demonstrate that in order to obtain accurate estimates of mutation rate and timing of events, observed mutation counts should be corrected to account for clonal mutations that occurred after the founding of the tumor, as well as sequencing coverage. Chronic lymphocytic leukemia (CLL), which often does not require treatment for years after diagnosis, presents an optimal system to study the untreated, natural evolution of cancer cell populations. When we apply our methodology to reconstruct the individual evolutionary histories of CLL patients, we find that the parental leukemic clone typically appears within the first fifteen years of life. Public Library of Science 2022-11-04 /pmc/articles/PMC9668150/ /pubmed/36331987 http://dx.doi.org/10.1371/journal.pcbi.1010677 Text en © 2022 Lee, Bozic https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lee, Nathan D. Bozic, Ivana Inferring parameters of cancer evolution in chronic lymphocytic leukemia |
title | Inferring parameters of cancer evolution in chronic lymphocytic leukemia |
title_full | Inferring parameters of cancer evolution in chronic lymphocytic leukemia |
title_fullStr | Inferring parameters of cancer evolution in chronic lymphocytic leukemia |
title_full_unstemmed | Inferring parameters of cancer evolution in chronic lymphocytic leukemia |
title_short | Inferring parameters of cancer evolution in chronic lymphocytic leukemia |
title_sort | inferring parameters of cancer evolution in chronic lymphocytic leukemia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668150/ https://www.ncbi.nlm.nih.gov/pubmed/36331987 http://dx.doi.org/10.1371/journal.pcbi.1010677 |
work_keys_str_mv | AT leenathand inferringparametersofcancerevolutioninchroniclymphocyticleukemia AT bozicivana inferringparametersofcancerevolutioninchroniclymphocyticleukemia |