Cargando…
Calibrated bagging deep learning for image semantic segmentation: A case study on COVID-19 chest X-ray image
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-19 in a more efficient and comprehensiv...
Autores principales: | Nwosu, Lucy, Li, Xiangfang, Qian, Lijun, Kim, Seungchan, Dong, Xishuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668167/ https://www.ncbi.nlm.nih.gov/pubmed/36383512 http://dx.doi.org/10.1371/journal.pone.0276250 |
Ejemplares similares
-
New bag of deep visual words based features to classify chest x-ray images for COVID-19 diagnosis
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
Fusion of multi-scale bag of deep visual words features of chest X-ray images to detect COVID-19 infection
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
Deep Semantic Segmentation of Angiogenesis Images
por: Ibragimov, Alisher, et al.
Publicado: (2023) -
Automated semantic lung segmentation in chest CT images using deep neural network
por: Murugappan, M., et al.
Publicado: (2023) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023)