Cargando…

A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables

The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmenta...

Descripción completa

Detalles Bibliográficos
Autores principales: Hecker, Julian, Prokopenko, Dmitry, Moll, Matthew, Lee, Sanghun, Kim, Wonji, Qiao, Dandi, Voorhies, Kirsten, Kim, Woori, Vansteelandt, Stijn, Hobbs, Brian D., Cho, Michael H., Silverman, Edwin K., Lutz, Sharon M., DeMeo, Dawn L., Weiss, Scott T., Lange, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668174/
https://www.ncbi.nlm.nih.gov/pubmed/36383614
http://dx.doi.org/10.1371/journal.pgen.1010464
_version_ 1784831858540806144
author Hecker, Julian
Prokopenko, Dmitry
Moll, Matthew
Lee, Sanghun
Kim, Wonji
Qiao, Dandi
Voorhies, Kirsten
Kim, Woori
Vansteelandt, Stijn
Hobbs, Brian D.
Cho, Michael H.
Silverman, Edwin K.
Lutz, Sharon M.
DeMeo, Dawn L.
Weiss, Scott T.
Lange, Christoph
author_facet Hecker, Julian
Prokopenko, Dmitry
Moll, Matthew
Lee, Sanghun
Kim, Wonji
Qiao, Dandi
Voorhies, Kirsten
Kim, Woori
Vansteelandt, Stijn
Hobbs, Brian D.
Cho, Michael H.
Silverman, Edwin K.
Lutz, Sharon M.
DeMeo, Dawn L.
Weiss, Scott T.
Lange, Christoph
author_sort Hecker, Julian
collection PubMed
description The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmental effects is nontrivial and such model misspecifications can lead to false positive interaction findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy can increase the power to detect interactions, identifying contributing genes and pathways is difficult based on these relatively global results. Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environmental factors. Based on the user’s choice of statistical/machine learning approaches, a screening step selects and combines potential interactions into scores with improved interpretability. In the testing step, the application of robust statistics minimizes the susceptibility to main effect misspecifications. Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the screening strategy influences statistical power. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified highly significant interactions based on subcomponents of genetic risk scores. While the contributing single variant interaction signals are weak, our results indicate interaction patterns that result in strong aggregated effects, providing potential insights into underlying gene-environment interaction mechanisms.
format Online
Article
Text
id pubmed-9668174
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-96681742022-11-17 A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables Hecker, Julian Prokopenko, Dmitry Moll, Matthew Lee, Sanghun Kim, Wonji Qiao, Dandi Voorhies, Kirsten Kim, Woori Vansteelandt, Stijn Hobbs, Brian D. Cho, Michael H. Silverman, Edwin K. Lutz, Sharon M. DeMeo, Dawn L. Weiss, Scott T. Lange, Christoph PLoS Genet Methods The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmental effects is nontrivial and such model misspecifications can lead to false positive interaction findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy can increase the power to detect interactions, identifying contributing genes and pathways is difficult based on these relatively global results. Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environmental factors. Based on the user’s choice of statistical/machine learning approaches, a screening step selects and combines potential interactions into scores with improved interpretability. In the testing step, the application of robust statistics minimizes the susceptibility to main effect misspecifications. Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the screening strategy influences statistical power. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified highly significant interactions based on subcomponents of genetic risk scores. While the contributing single variant interaction signals are weak, our results indicate interaction patterns that result in strong aggregated effects, providing potential insights into underlying gene-environment interaction mechanisms. Public Library of Science 2022-11-16 /pmc/articles/PMC9668174/ /pubmed/36383614 http://dx.doi.org/10.1371/journal.pgen.1010464 Text en © 2022 Hecker et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Methods
Hecker, Julian
Prokopenko, Dmitry
Moll, Matthew
Lee, Sanghun
Kim, Wonji
Qiao, Dandi
Voorhies, Kirsten
Kim, Woori
Vansteelandt, Stijn
Hobbs, Brian D.
Cho, Michael H.
Silverman, Edwin K.
Lutz, Sharon M.
DeMeo, Dawn L.
Weiss, Scott T.
Lange, Christoph
A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
title A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
title_full A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
title_fullStr A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
title_full_unstemmed A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
title_short A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
title_sort robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668174/
https://www.ncbi.nlm.nih.gov/pubmed/36383614
http://dx.doi.org/10.1371/journal.pgen.1010464
work_keys_str_mv AT heckerjulian arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT prokopenkodmitry arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT mollmatthew arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT leesanghun arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT kimwonji arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT qiaodandi arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT voorhieskirsten arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT kimwoori arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT vansteelandtstijn arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT hobbsbriand arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT chomichaelh arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT silvermanedwink arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT lutzsharonm arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT demeodawnl arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT weissscottt arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT langechristoph arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT heckerjulian robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT prokopenkodmitry robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT mollmatthew robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT leesanghun robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT kimwonji robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT qiaodandi robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT voorhieskirsten robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT kimwoori robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT vansteelandtstijn robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT hobbsbriand robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT chomichaelh robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT silvermanedwink robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT lutzsharonm robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT demeodawnl robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT weissscottt robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables
AT langechristoph robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables