Cargando…
A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmenta...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668174/ https://www.ncbi.nlm.nih.gov/pubmed/36383614 http://dx.doi.org/10.1371/journal.pgen.1010464 |
_version_ | 1784831858540806144 |
---|---|
author | Hecker, Julian Prokopenko, Dmitry Moll, Matthew Lee, Sanghun Kim, Wonji Qiao, Dandi Voorhies, Kirsten Kim, Woori Vansteelandt, Stijn Hobbs, Brian D. Cho, Michael H. Silverman, Edwin K. Lutz, Sharon M. DeMeo, Dawn L. Weiss, Scott T. Lange, Christoph |
author_facet | Hecker, Julian Prokopenko, Dmitry Moll, Matthew Lee, Sanghun Kim, Wonji Qiao, Dandi Voorhies, Kirsten Kim, Woori Vansteelandt, Stijn Hobbs, Brian D. Cho, Michael H. Silverman, Edwin K. Lutz, Sharon M. DeMeo, Dawn L. Weiss, Scott T. Lange, Christoph |
author_sort | Hecker, Julian |
collection | PubMed |
description | The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmental effects is nontrivial and such model misspecifications can lead to false positive interaction findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy can increase the power to detect interactions, identifying contributing genes and pathways is difficult based on these relatively global results. Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environmental factors. Based on the user’s choice of statistical/machine learning approaches, a screening step selects and combines potential interactions into scores with improved interpretability. In the testing step, the application of robust statistics minimizes the susceptibility to main effect misspecifications. Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the screening strategy influences statistical power. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified highly significant interactions based on subcomponents of genetic risk scores. While the contributing single variant interaction signals are weak, our results indicate interaction patterns that result in strong aggregated effects, providing potential insights into underlying gene-environment interaction mechanisms. |
format | Online Article Text |
id | pubmed-9668174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96681742022-11-17 A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables Hecker, Julian Prokopenko, Dmitry Moll, Matthew Lee, Sanghun Kim, Wonji Qiao, Dandi Voorhies, Kirsten Kim, Woori Vansteelandt, Stijn Hobbs, Brian D. Cho, Michael H. Silverman, Edwin K. Lutz, Sharon M. DeMeo, Dawn L. Weiss, Scott T. Lange, Christoph PLoS Genet Methods The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmental effects is nontrivial and such model misspecifications can lead to false positive interaction findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy can increase the power to detect interactions, identifying contributing genes and pathways is difficult based on these relatively global results. Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environmental factors. Based on the user’s choice of statistical/machine learning approaches, a screening step selects and combines potential interactions into scores with improved interpretability. In the testing step, the application of robust statistics minimizes the susceptibility to main effect misspecifications. Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the screening strategy influences statistical power. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified highly significant interactions based on subcomponents of genetic risk scores. While the contributing single variant interaction signals are weak, our results indicate interaction patterns that result in strong aggregated effects, providing potential insights into underlying gene-environment interaction mechanisms. Public Library of Science 2022-11-16 /pmc/articles/PMC9668174/ /pubmed/36383614 http://dx.doi.org/10.1371/journal.pgen.1010464 Text en © 2022 Hecker et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Methods Hecker, Julian Prokopenko, Dmitry Moll, Matthew Lee, Sanghun Kim, Wonji Qiao, Dandi Voorhies, Kirsten Kim, Woori Vansteelandt, Stijn Hobbs, Brian D. Cho, Michael H. Silverman, Edwin K. Lutz, Sharon M. DeMeo, Dawn L. Weiss, Scott T. Lange, Christoph A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
title | A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
title_full | A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
title_fullStr | A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
title_full_unstemmed | A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
title_short | A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
title_sort | robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables |
topic | Methods |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668174/ https://www.ncbi.nlm.nih.gov/pubmed/36383614 http://dx.doi.org/10.1371/journal.pgen.1010464 |
work_keys_str_mv | AT heckerjulian arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT prokopenkodmitry arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT mollmatthew arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT leesanghun arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT kimwonji arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT qiaodandi arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT voorhieskirsten arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT kimwoori arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT vansteelandtstijn arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT hobbsbriand arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT chomichaelh arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT silvermanedwink arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT lutzsharonm arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT demeodawnl arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT weissscottt arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT langechristoph arobustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT heckerjulian robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT prokopenkodmitry robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT mollmatthew robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT leesanghun robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT kimwonji robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT qiaodandi robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT voorhieskirsten robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT kimwoori robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT vansteelandtstijn robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT hobbsbriand robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT chomichaelh robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT silvermanedwink robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT lutzsharonm robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT demeodawnl robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT weissscottt robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables AT langechristoph robustandadaptiveframeworkforinteractiontestinginquantitativetraitsbetweenmultiplegeneticlociandexposurevariables |