Cargando…
Machine learning based multi-modal prediction of future decline toward Alzheimer’s disease: An empirical study
Alzheimer’s disease (AD) is a neurodegenerative condition that progresses over decades. Early detection of individuals at high risk of future progression toward AD is likely to be of critical significance for the successful treatment and/or prevention of this devastating disease. In this paper, we p...
Autores principales: | Karaman, Batuhan K., Mormino, Elizabeth C., Sabuncu, Mert R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668188/ https://www.ncbi.nlm.nih.gov/pubmed/36383528 http://dx.doi.org/10.1371/journal.pone.0277322 |
Ejemplares similares
-
Machine learning and medical imaging
por: Wu, Guorong, et al.
Publicado: (2016) -
Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection
por: Reith, Fabian H., et al.
Publicado: (2021) -
Multi-modality machine learning predicting Parkinson’s disease
por: Makarious, Mary B., et al.
Publicado: (2022) -
Alzheimer’s disease, mild cognitive impairment, and normal aging distinguished by multi-modal parcellation and machine learning
por: Sheng, Jinhua, et al.
Publicado: (2020) -
Determining clinically meaningful decline in preclinical Alzheimer disease
por: Insel, Philip S., et al.
Publicado: (2019)