Cargando…

Utility of 3D Printed Models Versus Cadaveric Pathology for Learning: Challenging Stated Preferences

INTRODUCTION: 3D printing has recently emerged as an alternative to cadaveric models in medical education. A growing body of research supports the use of 3D printing in this context and details the beneficial educational outcomes. Prevailing studies rely on participants’ stated preferences, but litt...

Descripción completa

Detalles Bibliográficos
Autores principales: Nusem, Erez, Bray, Liam, Lillia, Jonathon, Schofield, Luke, Scott, Karen M., Gunasekera, Hasantha, Cheng, Tegan L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668234/
https://www.ncbi.nlm.nih.gov/pubmed/36407817
http://dx.doi.org/10.1007/s40670-022-01684-w
Descripción
Sumario:INTRODUCTION: 3D printing has recently emerged as an alternative to cadaveric models in medical education. A growing body of research supports the use of 3D printing in this context and details the beneficial educational outcomes. Prevailing studies rely on participants’ stated preferences, but little is known about actual student preferences. METHODS: A mixed methods approach, consisting of structured observation and computer vision, was used to investigate medical students’ preferences and handling patterns when using 3D printed versus cadaveric models in a cardiac pathology practical skills workshop. Participants were presented with cadaveric samples and 3D printed replicas of congenital heart deformities. RESULTS: Analysis with computer vision found that students held cadaveric hearts for longer than 3D printed models (7.71 vs. 6.73 h), but this was not significant when comparing across the four workshops. Structured observation found that student preferences changed over the workshop, shifting from 3D printed to cadaveric over time. Interactions with the heart models (e.g., pipecleaners) were comparable. CONCLUSION: We found that students had a slight preference for cadaveric hearts over 3D printed hearts. Notably, our study contrasts with other studies that report student preferences for 3D printed learning materials. Given the relative equivalence of the models, there is opportunity to leverage 3D printed learning materials (which are not scarce, unlike cadaveric materials) to provide equitable educational opportunities (e.g., in rural settings, where access to cadaveric hearts is less likely).