Cargando…
Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption
Integrating sense in a thin artificial muscle fiber for environmental adaption and actuation path tracing, as a snail tentacle does, is highly needed but still challenging because of the interfacing mismatch between the fiber’s actuation and sensing components. Here, we report an artificial neuromus...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668289/ https://www.ncbi.nlm.nih.gov/pubmed/36383669 http://dx.doi.org/10.1126/sciadv.abq7703 |
Sumario: | Integrating sense in a thin artificial muscle fiber for environmental adaption and actuation path tracing, as a snail tentacle does, is highly needed but still challenging because of the interfacing mismatch between the fiber’s actuation and sensing components. Here, we report an artificial neuromuscular fiber by wrapping a carbon nanotube (CNT) fiber core in sequence with an elastomer layer, a nanofiber network, and an MXene/CNT thin sheath, achieving the ingenious sense-judge-act intelligent system in an elastic fiber. The CNT/elastomer components provide actuation, and the sheath enables touch/stretch perception and hysteresis-free cyclic actuation tracing due to its strain-dependent resistance. As a whole, the coaxial structure builds a dielectric capacitor that enables sensitive touchless perception. The key to seamless integration is to use a nanofiber interface that allows the sensing layer to adaptively trace but not restrict actuation. This work provides promising solutions for closed-loop control for future intelligent soft robots. |
---|