Cargando…

Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization

PURPOSE: To investigate if network thresholding and raw data harmonization improve consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in multicentre datasets. METHODS: Brain networks were reconstructed from dMRI of five...

Descripción completa

Detalles Bibliográficos
Autores principales: de Brito Robalo, Bruno M., de Luca, Alberto, Chen, Christopher, Dewenter, Anna, Duering, Marco, Hilal, Saima, Koek, Huiberdina L., Kopczak, Anna, Lam, Bonnie Yin Ka, Leemans, Alexander, Mok, Vincent, Onkenhout, Laurien P., van den Brink, Hilde, Biessels, Geert Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668636/
https://www.ncbi.nlm.nih.gov/pubmed/36240537
http://dx.doi.org/10.1016/j.nicl.2022.103217
_version_ 1784831957809496064
author de Brito Robalo, Bruno M.
de Luca, Alberto
Chen, Christopher
Dewenter, Anna
Duering, Marco
Hilal, Saima
Koek, Huiberdina L.
Kopczak, Anna
Lam, Bonnie Yin Ka
Leemans, Alexander
Mok, Vincent
Onkenhout, Laurien P.
van den Brink, Hilde
Biessels, Geert Jan
author_facet de Brito Robalo, Bruno M.
de Luca, Alberto
Chen, Christopher
Dewenter, Anna
Duering, Marco
Hilal, Saima
Koek, Huiberdina L.
Kopczak, Anna
Lam, Bonnie Yin Ka
Leemans, Alexander
Mok, Vincent
Onkenhout, Laurien P.
van den Brink, Hilde
Biessels, Geert Jan
author_sort de Brito Robalo, Bruno M.
collection PubMed
description PURPOSE: To investigate if network thresholding and raw data harmonization improve consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in multicentre datasets. METHODS: Brain networks were reconstructed from dMRI of five samples with cerebral small vessel disease (SVD; 629 patients, 166 controls), as a clinically relevant exemplar condition for studies on network integrity. We evaluated consistency of network architecture in age-matched controls, by calculating cross-site differences in connection probability and fractional anisotropy (FA). Subsequently we evaluated precision and sensitivity to disease effects by identifying connections with low FA in sporadic SVD patients relative to controls, using more severely affected patients with a pure form of genetically defined SVD as reference. RESULTS: In controls, thresholding and harmonization improved consistency of network architecture, minimizing cross-site differences in connection probability and FA. In patients relative to controls, thresholding improved precision to detect disrupted connections by removing false positive connections (precision, before: 0.09–0.19; after: 0.38–0.70). Before harmonization, sensitivity was low within individual sites, with few connections surviving multiple testing correction (k = 0–25 connections). Harmonization and pooling improved sensitivity (k = 38), while also achieving higher precision when combined with thresholding (0.97). CONCLUSION: We demonstrated that network consistency, precision and sensitivity to detect disease effects in SVD are improved by thresholding and harmonization. We recommend introducing these techniques to leverage large existing multicentre datasets to better understand the impact of disease on brain networks.
format Online
Article
Text
id pubmed-9668636
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96686362022-11-18 Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization de Brito Robalo, Bruno M. de Luca, Alberto Chen, Christopher Dewenter, Anna Duering, Marco Hilal, Saima Koek, Huiberdina L. Kopczak, Anna Lam, Bonnie Yin Ka Leemans, Alexander Mok, Vincent Onkenhout, Laurien P. van den Brink, Hilde Biessels, Geert Jan Neuroimage Clin Regular Article PURPOSE: To investigate if network thresholding and raw data harmonization improve consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in multicentre datasets. METHODS: Brain networks were reconstructed from dMRI of five samples with cerebral small vessel disease (SVD; 629 patients, 166 controls), as a clinically relevant exemplar condition for studies on network integrity. We evaluated consistency of network architecture in age-matched controls, by calculating cross-site differences in connection probability and fractional anisotropy (FA). Subsequently we evaluated precision and sensitivity to disease effects by identifying connections with low FA in sporadic SVD patients relative to controls, using more severely affected patients with a pure form of genetically defined SVD as reference. RESULTS: In controls, thresholding and harmonization improved consistency of network architecture, minimizing cross-site differences in connection probability and FA. In patients relative to controls, thresholding improved precision to detect disrupted connections by removing false positive connections (precision, before: 0.09–0.19; after: 0.38–0.70). Before harmonization, sensitivity was low within individual sites, with few connections surviving multiple testing correction (k = 0–25 connections). Harmonization and pooling improved sensitivity (k = 38), while also achieving higher precision when combined with thresholding (0.97). CONCLUSION: We demonstrated that network consistency, precision and sensitivity to detect disease effects in SVD are improved by thresholding and harmonization. We recommend introducing these techniques to leverage large existing multicentre datasets to better understand the impact of disease on brain networks. Elsevier 2022-10-03 /pmc/articles/PMC9668636/ /pubmed/36240537 http://dx.doi.org/10.1016/j.nicl.2022.103217 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Regular Article
de Brito Robalo, Bruno M.
de Luca, Alberto
Chen, Christopher
Dewenter, Anna
Duering, Marco
Hilal, Saima
Koek, Huiberdina L.
Kopczak, Anna
Lam, Bonnie Yin Ka
Leemans, Alexander
Mok, Vincent
Onkenhout, Laurien P.
van den Brink, Hilde
Biessels, Geert Jan
Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization
title Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization
title_full Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization
title_fullStr Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization
title_full_unstemmed Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization
title_short Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization
title_sort improved sensitivity and precision in multicentre diffusion mri network analysis using thresholding and harmonization
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668636/
https://www.ncbi.nlm.nih.gov/pubmed/36240537
http://dx.doi.org/10.1016/j.nicl.2022.103217
work_keys_str_mv AT debritorobalobrunom improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT delucaalberto improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT chenchristopher improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT dewenteranna improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT dueringmarco improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT hilalsaima improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT koekhuiberdinal improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT kopczakanna improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT lambonnieyinka improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT leemansalexander improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT mokvincent improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT onkenhoutlaurienp improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT vandenbrinkhilde improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization
AT biesselsgeertjan improvedsensitivityandprecisioninmulticentrediffusionmrinetworkanalysisusingthresholdingandharmonization