Cargando…
Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
OBJECTIVE: There has been a large amount of research in the field of artificial intelligence (AI) as applied to clinical radiology. However, these studies vary in design and quality and systematic reviews of the entire field are lacking.This systematic review aimed to identify all papers that used d...
Autores principales: | Kelly, Brendan S., Judge, Conor, Bollard, Stephanie M., Clifford, Simon M., Healy, Gerard M., Aziz, Awsam, Mathur, Prateek, Islam, Shah, Yeom, Kristen W., Lawlor, Aonghus, Killeen, Ronan P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668941/ https://www.ncbi.nlm.nih.gov/pubmed/35420305 http://dx.doi.org/10.1007/s00330-022-08784-6 |
Ejemplares similares
-
Correction to: Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
Radiology artificial intelligence, a systematic evaluation of methods (RAISE): a systematic review protocol
por: Kelly, Brendan, et al.
Publicado: (2020) -
Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data
por: Kelly, Brendan S., et al.
Publicado: (2023) -
Transformer-based structuring of free-text radiology report databases
por: Nowak, S., et al.
Publicado: (2023) -
An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education
por: Huisman, Merel, et al.
Publicado: (2021)