Cargando…
Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
BACKGROUND: Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668942/ https://www.ncbi.nlm.nih.gov/pubmed/35962244 http://dx.doi.org/10.1007/s10157-022-02256-3 |
_version_ | 1784832023940038656 |
---|---|
author | Kimura, Tomonori Yamamoto, Ryohei Yoshino, Mitsuaki Sakate, Ryuichi Imai, Enyu Maruyama, Shoichi Yokoyama, Hitoshi Sugiyama, Hitoshi Nitta, Kosaku Tsukamoto, Tatsuo Uchida, Shunya Takeda, Asami Sato, Toshinobu Wada, Takashi Hayashi, Hiroki Akai, Yasuhiro Fukunaga, Megumu Tsuruya, Kazuhiko Masutani, Kosuke Konta, Tsuneo Shoji, Tatsuya Hiramatsu, Takeyuki Goto, Shunsuke Tamai, Hirofumi Nishio, Saori Nagai, Kojiro Yamagata, Kunihiro Yasuda, Hideo Ichida, Shizunori Naruse, Tomohiko Nishino, Tomoya Sobajima, Hiroshi Akahori, Toshiyuki Ito, Takafumi Terada, Yoshio Katafuchi, Ritsuko Fujimoto, Shouichi Okada, Hirokazu Mimura, Tetsushi Suzuki, Satoshi Saka, Yosuke Sofue, Tadashi Kitagawa, Kiyoki Fujita, Yoshiro Mizutani, Makoto Kashihara, Naoki Sato, Hiroshi Narita, Ichiei Isaka, Yoshitaka |
author_facet | Kimura, Tomonori Yamamoto, Ryohei Yoshino, Mitsuaki Sakate, Ryuichi Imai, Enyu Maruyama, Shoichi Yokoyama, Hitoshi Sugiyama, Hitoshi Nitta, Kosaku Tsukamoto, Tatsuo Uchida, Shunya Takeda, Asami Sato, Toshinobu Wada, Takashi Hayashi, Hiroki Akai, Yasuhiro Fukunaga, Megumu Tsuruya, Kazuhiko Masutani, Kosuke Konta, Tsuneo Shoji, Tatsuya Hiramatsu, Takeyuki Goto, Shunsuke Tamai, Hirofumi Nishio, Saori Nagai, Kojiro Yamagata, Kunihiro Yasuda, Hideo Ichida, Shizunori Naruse, Tomohiko Nishino, Tomoya Sobajima, Hiroshi Akahori, Toshiyuki Ito, Takafumi Terada, Yoshio Katafuchi, Ritsuko Fujimoto, Shouichi Okada, Hirokazu Mimura, Tetsushi Suzuki, Satoshi Saka, Yosuke Sofue, Tadashi Kitagawa, Kiyoki Fujita, Yoshiro Mizutani, Makoto Kashihara, Naoki Sato, Hiroshi Narita, Ichiei Isaka, Yoshitaka |
author_sort | Kimura, Tomonori |
collection | PubMed |
description | BACKGROUND: Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using objective common clinical items. METHODS: Machine learning clustering was performed on 205 cases from the Japan Nephrotic Syndrome Cohort Study, whose clinical parameters, serum creatinine, serum albumin, dipstick hematuria, and proteinuria were traceable after kidney biopsy at 5 measured points up to 2 years. The clinical patterns of time-series data were learned using long short-term memory (LSTM)-encoder–decoder architecture, an unsupervised machine learning classifier. Clinical clusters were defined as Gaussian mixture distributions in a two-dimensional scatter plot based on the highest log-likelihood. RESULTS: Time-series data of nephrotic syndrome were classified into four clusters. Patients in the fourth cluster showed the increase in serum creatinine in the later part of the follow-up period. Patients in both the third and fourth clusters were initially high in both hematuria and proteinuria, whereas a lack of decline in the urinary protein level preceded the worsening of kidney function in fourth cluster. The original diseases of fourth cluster included all the disease studied in this cohort. CONCLUSIONS: Four kinds of clinical courses were identified in nephrotic syndrome. This classified clinical course may help objectively grasp the actual condition or treatment resistance of individual patients with nephrotic syndrome. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10157-022-02256-3. |
format | Online Article Text |
id | pubmed-9668942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Nature Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-96689422022-11-18 Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) Kimura, Tomonori Yamamoto, Ryohei Yoshino, Mitsuaki Sakate, Ryuichi Imai, Enyu Maruyama, Shoichi Yokoyama, Hitoshi Sugiyama, Hitoshi Nitta, Kosaku Tsukamoto, Tatsuo Uchida, Shunya Takeda, Asami Sato, Toshinobu Wada, Takashi Hayashi, Hiroki Akai, Yasuhiro Fukunaga, Megumu Tsuruya, Kazuhiko Masutani, Kosuke Konta, Tsuneo Shoji, Tatsuya Hiramatsu, Takeyuki Goto, Shunsuke Tamai, Hirofumi Nishio, Saori Nagai, Kojiro Yamagata, Kunihiro Yasuda, Hideo Ichida, Shizunori Naruse, Tomohiko Nishino, Tomoya Sobajima, Hiroshi Akahori, Toshiyuki Ito, Takafumi Terada, Yoshio Katafuchi, Ritsuko Fujimoto, Shouichi Okada, Hirokazu Mimura, Tetsushi Suzuki, Satoshi Saka, Yosuke Sofue, Tadashi Kitagawa, Kiyoki Fujita, Yoshiro Mizutani, Makoto Kashihara, Naoki Sato, Hiroshi Narita, Ichiei Isaka, Yoshitaka Clin Exp Nephrol Original Article BACKGROUND: Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using objective common clinical items. METHODS: Machine learning clustering was performed on 205 cases from the Japan Nephrotic Syndrome Cohort Study, whose clinical parameters, serum creatinine, serum albumin, dipstick hematuria, and proteinuria were traceable after kidney biopsy at 5 measured points up to 2 years. The clinical patterns of time-series data were learned using long short-term memory (LSTM)-encoder–decoder architecture, an unsupervised machine learning classifier. Clinical clusters were defined as Gaussian mixture distributions in a two-dimensional scatter plot based on the highest log-likelihood. RESULTS: Time-series data of nephrotic syndrome were classified into four clusters. Patients in the fourth cluster showed the increase in serum creatinine in the later part of the follow-up period. Patients in both the third and fourth clusters were initially high in both hematuria and proteinuria, whereas a lack of decline in the urinary protein level preceded the worsening of kidney function in fourth cluster. The original diseases of fourth cluster included all the disease studied in this cohort. CONCLUSIONS: Four kinds of clinical courses were identified in nephrotic syndrome. This classified clinical course may help objectively grasp the actual condition or treatment resistance of individual patients with nephrotic syndrome. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10157-022-02256-3. Springer Nature Singapore 2022-08-12 2022 /pmc/articles/PMC9668942/ /pubmed/35962244 http://dx.doi.org/10.1007/s10157-022-02256-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Kimura, Tomonori Yamamoto, Ryohei Yoshino, Mitsuaki Sakate, Ryuichi Imai, Enyu Maruyama, Shoichi Yokoyama, Hitoshi Sugiyama, Hitoshi Nitta, Kosaku Tsukamoto, Tatsuo Uchida, Shunya Takeda, Asami Sato, Toshinobu Wada, Takashi Hayashi, Hiroki Akai, Yasuhiro Fukunaga, Megumu Tsuruya, Kazuhiko Masutani, Kosuke Konta, Tsuneo Shoji, Tatsuya Hiramatsu, Takeyuki Goto, Shunsuke Tamai, Hirofumi Nishio, Saori Nagai, Kojiro Yamagata, Kunihiro Yasuda, Hideo Ichida, Shizunori Naruse, Tomohiko Nishino, Tomoya Sobajima, Hiroshi Akahori, Toshiyuki Ito, Takafumi Terada, Yoshio Katafuchi, Ritsuko Fujimoto, Shouichi Okada, Hirokazu Mimura, Tetsushi Suzuki, Satoshi Saka, Yosuke Sofue, Tadashi Kitagawa, Kiyoki Fujita, Yoshiro Mizutani, Makoto Kashihara, Naoki Sato, Hiroshi Narita, Ichiei Isaka, Yoshitaka Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) |
title | Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) |
title_full | Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) |
title_fullStr | Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) |
title_full_unstemmed | Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) |
title_short | Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) |
title_sort | deep learning analysis of clinical course of primary nephrotic syndrome: japan nephrotic syndrome cohort study (jnscs) |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668942/ https://www.ncbi.nlm.nih.gov/pubmed/35962244 http://dx.doi.org/10.1007/s10157-022-02256-3 |
work_keys_str_mv | AT kimuratomonori deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT yamamotoryohei deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT yoshinomitsuaki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT sakateryuichi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT imaienyu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT maruyamashoichi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT yokoyamahitoshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT sugiyamahitoshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT nittakosaku deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT tsukamototatsuo deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT uchidashunya deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT takedaasami deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT satotoshinobu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT wadatakashi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT hayashihiroki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT akaiyasuhiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT fukunagamegumu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT tsuruyakazuhiko deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT masutanikosuke deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT kontatsuneo deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT shojitatsuya deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT hiramatsutakeyuki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT gotoshunsuke deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT tamaihirofumi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT nishiosaori deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT nagaikojiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT yamagatakunihiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT yasudahideo deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT ichidashizunori deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT narusetomohiko deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT nishinotomoya deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT sobajimahiroshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT akahoritoshiyuki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT itotakafumi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT teradayoshio deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT katafuchiritsuko deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT fujimotoshouichi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT okadahirokazu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT mimuratetsushi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT suzukisatoshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT sakayosuke deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT sofuetadashi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT kitagawakiyoki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT fujitayoshiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT mizutanimakoto deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT kashiharanaoki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT satohiroshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT naritaichiei deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs AT isakayoshitaka deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs |