Cargando…

Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)

BACKGROUND: Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using...

Descripción completa

Detalles Bibliográficos
Autores principales: Kimura, Tomonori, Yamamoto, Ryohei, Yoshino, Mitsuaki, Sakate, Ryuichi, Imai, Enyu, Maruyama, Shoichi, Yokoyama, Hitoshi, Sugiyama, Hitoshi, Nitta, Kosaku, Tsukamoto, Tatsuo, Uchida, Shunya, Takeda, Asami, Sato, Toshinobu, Wada, Takashi, Hayashi, Hiroki, Akai, Yasuhiro, Fukunaga, Megumu, Tsuruya, Kazuhiko, Masutani, Kosuke, Konta, Tsuneo, Shoji, Tatsuya, Hiramatsu, Takeyuki, Goto, Shunsuke, Tamai, Hirofumi, Nishio, Saori, Nagai, Kojiro, Yamagata, Kunihiro, Yasuda, Hideo, Ichida, Shizunori, Naruse, Tomohiko, Nishino, Tomoya, Sobajima, Hiroshi, Akahori, Toshiyuki, Ito, Takafumi, Terada, Yoshio, Katafuchi, Ritsuko, Fujimoto, Shouichi, Okada, Hirokazu, Mimura, Tetsushi, Suzuki, Satoshi, Saka, Yosuke, Sofue, Tadashi, Kitagawa, Kiyoki, Fujita, Yoshiro, Mizutani, Makoto, Kashihara, Naoki, Sato, Hiroshi, Narita, Ichiei, Isaka, Yoshitaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668942/
https://www.ncbi.nlm.nih.gov/pubmed/35962244
http://dx.doi.org/10.1007/s10157-022-02256-3
_version_ 1784832023940038656
author Kimura, Tomonori
Yamamoto, Ryohei
Yoshino, Mitsuaki
Sakate, Ryuichi
Imai, Enyu
Maruyama, Shoichi
Yokoyama, Hitoshi
Sugiyama, Hitoshi
Nitta, Kosaku
Tsukamoto, Tatsuo
Uchida, Shunya
Takeda, Asami
Sato, Toshinobu
Wada, Takashi
Hayashi, Hiroki
Akai, Yasuhiro
Fukunaga, Megumu
Tsuruya, Kazuhiko
Masutani, Kosuke
Konta, Tsuneo
Shoji, Tatsuya
Hiramatsu, Takeyuki
Goto, Shunsuke
Tamai, Hirofumi
Nishio, Saori
Nagai, Kojiro
Yamagata, Kunihiro
Yasuda, Hideo
Ichida, Shizunori
Naruse, Tomohiko
Nishino, Tomoya
Sobajima, Hiroshi
Akahori, Toshiyuki
Ito, Takafumi
Terada, Yoshio
Katafuchi, Ritsuko
Fujimoto, Shouichi
Okada, Hirokazu
Mimura, Tetsushi
Suzuki, Satoshi
Saka, Yosuke
Sofue, Tadashi
Kitagawa, Kiyoki
Fujita, Yoshiro
Mizutani, Makoto
Kashihara, Naoki
Sato, Hiroshi
Narita, Ichiei
Isaka, Yoshitaka
author_facet Kimura, Tomonori
Yamamoto, Ryohei
Yoshino, Mitsuaki
Sakate, Ryuichi
Imai, Enyu
Maruyama, Shoichi
Yokoyama, Hitoshi
Sugiyama, Hitoshi
Nitta, Kosaku
Tsukamoto, Tatsuo
Uchida, Shunya
Takeda, Asami
Sato, Toshinobu
Wada, Takashi
Hayashi, Hiroki
Akai, Yasuhiro
Fukunaga, Megumu
Tsuruya, Kazuhiko
Masutani, Kosuke
Konta, Tsuneo
Shoji, Tatsuya
Hiramatsu, Takeyuki
Goto, Shunsuke
Tamai, Hirofumi
Nishio, Saori
Nagai, Kojiro
Yamagata, Kunihiro
Yasuda, Hideo
Ichida, Shizunori
Naruse, Tomohiko
Nishino, Tomoya
Sobajima, Hiroshi
Akahori, Toshiyuki
Ito, Takafumi
Terada, Yoshio
Katafuchi, Ritsuko
Fujimoto, Shouichi
Okada, Hirokazu
Mimura, Tetsushi
Suzuki, Satoshi
Saka, Yosuke
Sofue, Tadashi
Kitagawa, Kiyoki
Fujita, Yoshiro
Mizutani, Makoto
Kashihara, Naoki
Sato, Hiroshi
Narita, Ichiei
Isaka, Yoshitaka
author_sort Kimura, Tomonori
collection PubMed
description BACKGROUND: Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using objective common clinical items. METHODS: Machine learning clustering was performed on 205 cases from the Japan Nephrotic Syndrome Cohort Study, whose clinical parameters, serum creatinine, serum albumin, dipstick hematuria, and proteinuria were traceable after kidney biopsy at 5 measured points up to 2 years. The clinical patterns of time-series data were learned using long short-term memory (LSTM)-encoder–decoder architecture, an unsupervised machine learning classifier. Clinical clusters were defined as Gaussian mixture distributions in a two-dimensional scatter plot based on the highest log-likelihood. RESULTS: Time-series data of nephrotic syndrome were classified into four clusters. Patients in the fourth cluster showed the increase in serum creatinine in the later part of the follow-up period. Patients in both the third and fourth clusters were initially high in both hematuria and proteinuria, whereas a lack of decline in the urinary protein level preceded the worsening of kidney function in fourth cluster. The original diseases of fourth cluster included all the disease studied in this cohort. CONCLUSIONS: Four kinds of clinical courses were identified in nephrotic syndrome. This classified clinical course may help objectively grasp the actual condition or treatment resistance of individual patients with nephrotic syndrome. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10157-022-02256-3.
format Online
Article
Text
id pubmed-9668942
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-96689422022-11-18 Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS) Kimura, Tomonori Yamamoto, Ryohei Yoshino, Mitsuaki Sakate, Ryuichi Imai, Enyu Maruyama, Shoichi Yokoyama, Hitoshi Sugiyama, Hitoshi Nitta, Kosaku Tsukamoto, Tatsuo Uchida, Shunya Takeda, Asami Sato, Toshinobu Wada, Takashi Hayashi, Hiroki Akai, Yasuhiro Fukunaga, Megumu Tsuruya, Kazuhiko Masutani, Kosuke Konta, Tsuneo Shoji, Tatsuya Hiramatsu, Takeyuki Goto, Shunsuke Tamai, Hirofumi Nishio, Saori Nagai, Kojiro Yamagata, Kunihiro Yasuda, Hideo Ichida, Shizunori Naruse, Tomohiko Nishino, Tomoya Sobajima, Hiroshi Akahori, Toshiyuki Ito, Takafumi Terada, Yoshio Katafuchi, Ritsuko Fujimoto, Shouichi Okada, Hirokazu Mimura, Tetsushi Suzuki, Satoshi Saka, Yosuke Sofue, Tadashi Kitagawa, Kiyoki Fujita, Yoshiro Mizutani, Makoto Kashihara, Naoki Sato, Hiroshi Narita, Ichiei Isaka, Yoshitaka Clin Exp Nephrol Original Article BACKGROUND: Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using objective common clinical items. METHODS: Machine learning clustering was performed on 205 cases from the Japan Nephrotic Syndrome Cohort Study, whose clinical parameters, serum creatinine, serum albumin, dipstick hematuria, and proteinuria were traceable after kidney biopsy at 5 measured points up to 2 years. The clinical patterns of time-series data were learned using long short-term memory (LSTM)-encoder–decoder architecture, an unsupervised machine learning classifier. Clinical clusters were defined as Gaussian mixture distributions in a two-dimensional scatter plot based on the highest log-likelihood. RESULTS: Time-series data of nephrotic syndrome were classified into four clusters. Patients in the fourth cluster showed the increase in serum creatinine in the later part of the follow-up period. Patients in both the third and fourth clusters were initially high in both hematuria and proteinuria, whereas a lack of decline in the urinary protein level preceded the worsening of kidney function in fourth cluster. The original diseases of fourth cluster included all the disease studied in this cohort. CONCLUSIONS: Four kinds of clinical courses were identified in nephrotic syndrome. This classified clinical course may help objectively grasp the actual condition or treatment resistance of individual patients with nephrotic syndrome. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10157-022-02256-3. Springer Nature Singapore 2022-08-12 2022 /pmc/articles/PMC9668942/ /pubmed/35962244 http://dx.doi.org/10.1007/s10157-022-02256-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Kimura, Tomonori
Yamamoto, Ryohei
Yoshino, Mitsuaki
Sakate, Ryuichi
Imai, Enyu
Maruyama, Shoichi
Yokoyama, Hitoshi
Sugiyama, Hitoshi
Nitta, Kosaku
Tsukamoto, Tatsuo
Uchida, Shunya
Takeda, Asami
Sato, Toshinobu
Wada, Takashi
Hayashi, Hiroki
Akai, Yasuhiro
Fukunaga, Megumu
Tsuruya, Kazuhiko
Masutani, Kosuke
Konta, Tsuneo
Shoji, Tatsuya
Hiramatsu, Takeyuki
Goto, Shunsuke
Tamai, Hirofumi
Nishio, Saori
Nagai, Kojiro
Yamagata, Kunihiro
Yasuda, Hideo
Ichida, Shizunori
Naruse, Tomohiko
Nishino, Tomoya
Sobajima, Hiroshi
Akahori, Toshiyuki
Ito, Takafumi
Terada, Yoshio
Katafuchi, Ritsuko
Fujimoto, Shouichi
Okada, Hirokazu
Mimura, Tetsushi
Suzuki, Satoshi
Saka, Yosuke
Sofue, Tadashi
Kitagawa, Kiyoki
Fujita, Yoshiro
Mizutani, Makoto
Kashihara, Naoki
Sato, Hiroshi
Narita, Ichiei
Isaka, Yoshitaka
Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
title Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
title_full Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
title_fullStr Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
title_full_unstemmed Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
title_short Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS)
title_sort deep learning analysis of clinical course of primary nephrotic syndrome: japan nephrotic syndrome cohort study (jnscs)
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668942/
https://www.ncbi.nlm.nih.gov/pubmed/35962244
http://dx.doi.org/10.1007/s10157-022-02256-3
work_keys_str_mv AT kimuratomonori deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT yamamotoryohei deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT yoshinomitsuaki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT sakateryuichi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT imaienyu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT maruyamashoichi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT yokoyamahitoshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT sugiyamahitoshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT nittakosaku deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT tsukamototatsuo deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT uchidashunya deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT takedaasami deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT satotoshinobu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT wadatakashi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT hayashihiroki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT akaiyasuhiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT fukunagamegumu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT tsuruyakazuhiko deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT masutanikosuke deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT kontatsuneo deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT shojitatsuya deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT hiramatsutakeyuki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT gotoshunsuke deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT tamaihirofumi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT nishiosaori deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT nagaikojiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT yamagatakunihiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT yasudahideo deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT ichidashizunori deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT narusetomohiko deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT nishinotomoya deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT sobajimahiroshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT akahoritoshiyuki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT itotakafumi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT teradayoshio deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT katafuchiritsuko deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT fujimotoshouichi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT okadahirokazu deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT mimuratetsushi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT suzukisatoshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT sakayosuke deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT sofuetadashi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT kitagawakiyoki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT fujitayoshiro deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT mizutanimakoto deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT kashiharanaoki deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT satohiroshi deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT naritaichiei deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs
AT isakayoshitaka deeplearninganalysisofclinicalcourseofprimarynephroticsyndromejapannephroticsyndromecohortstudyjnscs