Cargando…
Evaluating different web applications to assess the toxicity of plasticizers
Plasticizers increase the flexibility of plastics. As environmental leachates they lead to increased water and soil pollution, as well as to serious harm to human health. This study was set out to explore various web applications to predict the toxicological properties of plasticizers. Web-based too...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668977/ https://www.ncbi.nlm.nih.gov/pubmed/36385271 http://dx.doi.org/10.1038/s41598-022-18327-0 |
Sumario: | Plasticizers increase the flexibility of plastics. As environmental leachates they lead to increased water and soil pollution, as well as to serious harm to human health. This study was set out to explore various web applications to predict the toxicological properties of plasticizers. Web-based tools (e.g., BOILED-Egg, LAZAR, PROTOX-II, CarcinoPred-EL) and VEGA were accessed via an 5th–10th generation computer in order to obtain toxicological predictions. Based on the LAZAR mutagenicity assessment was only bisphenol F predicted as mutagenic. The BBP and DBP in RF; DEHP in RF and XGBoost; DNOP in RF and XGBoost models were predicted as carcinogenic in the CarcinoPred-EL web application. From the bee predictive model (KNN/IRFMN) BPF, di-n-propyl phthalate, diallyl phthalate, dibutyl phthalate, and diisohexyl phthalate were predicted as strong bee toxicants. Acute toxicity for fish using the model Sarpy/IRFMN predicted 19 plasticizers as strong toxicants with LC50 values of less than 1 mg/L. This study also considered plasticizer effects on gastrointestinal absorption and other toxicological endpoints. |
---|