Cargando…
Robust R-peak detection in an electrocardiogram with stationary wavelet transformation and separable convolution
R-peak detection is an essential step in analyzing electrocardiograms (ECGs). Previous deep learning models reported their performance primarily in a single database, and some models did not perform at the highest levels when applied to a database different from the testing database. To achieve high...
Autores principales: | Yun, Donghwan, Lee, Hyung-Chul, Jung, Chul-Woo, Kwon, Soonil, Lee, So-Ryoung, Kim, Kwangsoo, Kim, Yon Su, Han, Seung Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669048/ https://www.ncbi.nlm.nih.gov/pubmed/36385144 http://dx.doi.org/10.1038/s41598-022-19495-9 |
Ejemplares similares
-
System of integrating biosignals during hemodialysis: the CONTINUAL (Continuous mOnitoriNg viTal sIgN dUring hemodiALysis) registry
por: Kim, Seonmi, et al.
Publicado: (2022) -
R Peak Detection in Electrocardiogram Signal Based on an Optimal Combination of Wavelet Transform, Hilbert Transform, and Adaptive Thresholding
por: Rabbani, Hossein, et al.
Publicado: (2011) -
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021) -
Motion artefact removals for wearable ECG using stationary wavelet transform
por: Nagai, Shuto, et al.
Publicado: (2017) -
Beta-Blocker Separation on Phosphodiester Stationary Phases—The Application of Intelligent Peak Deconvolution Analysis
por: Kalisz, Oktawia, et al.
Publicado: (2023)