Cargando…
Multi‐mask self‐supervised learning for physics‐guided neural networks in highly accelerated magnetic resonance imaging
Self‐supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self‐supervised learning methods for physics‐guided reconstruction networks split acquired undersampled data...
Autores principales: | Yaman, Burhaneddin, Gu, Hongyi, Hosseini, Seyed Amir Hossein, Demirel, Omer Burak, Moeller, Steen, Ellermann, Jutta, Uğurbil, Kâmil, Akçakaya, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669191/ https://www.ncbi.nlm.nih.gov/pubmed/35789133 http://dx.doi.org/10.1002/nbm.4798 |
Ejemplares similares
-
Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning
por: Gu, Hongyi, et al.
Publicado: (2022) -
Signal intensity informed multi‐coil encoding operator for physics‐guided deep learning reconstruction of highly accelerated myocardial perfusion CMR
por: Demirel, Omer Burak, et al.
Publicado: (2022) -
Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning
por: Zhang, Chi, et al.
Publicado: (2022) -
Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling
por: Hosseini, Seyed Amir Hossein, et al.
Publicado: (2020) -
Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction
por: Zhang, Chi, et al.
Publicado: (2019)