Cargando…
Invariance of object detection in untrained deep neural networks
The ability to perceive visual objects with various types of transformations, such as rotation, translation, and scaling, is crucial for consistent object recognition. In machine learning, invariant object detection for a network is often implemented by augmentation with a massive number of training...
Autores principales: | Cheon, Jeonghwan, Baek, Seungdae, Paik, Se-Bum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669311/ https://www.ncbi.nlm.nih.gov/pubmed/36405785 http://dx.doi.org/10.3389/fncom.2022.1030707 |
Ejemplares similares
-
Face detection in untrained deep neural networks
por: Baek, Seungdae, et al.
Publicado: (2021) -
Visual number sense in untrained deep neural networks
por: Kim, Gwangsu, et al.
Publicado: (2021) -
Species-specific wiring of cortical circuits for small-world networks in the primary visual cortex
por: Baek, Seungdae, et al.
Publicado: (2023) -
Recognition ability of untrained neural networks to symbolic numbers
por: Zhou, Yiwei, et al.
Publicado: (2022) -
Neural Representations that Support Invariant Object Recognition
por: Goris, Robbe L. T., et al.
Publicado: (2009)