Cargando…
A New Interval Type-2 Fuzzy Aggregation Approach for Combining Multiple Neural Networks in Clustering and Prediction of Time Series
Inspired by how some cognitive abilities affect the human decision-making process, the proposed approach combines neural networks with type-2 fuzzy systems. The proposal consists of combining computational models of artificial neural networks and fuzzy systems to perform clustering and prediction of...
Autores principales: | Ramírez, Martha, Melin, Patricia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669546/ http://dx.doi.org/10.1007/s40815-022-01426-5 |
Ejemplares similares
-
Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction
por: Castillo, Oscar, et al.
Publicado: (2022) -
Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico
por: Melin, Patricia, et al.
Publicado: (2020) -
Hierarchical modular granular neural networks with fuzzy aggregation
por: Sanchez, Daniela, et al.
Publicado: (2016) -
Modeling time series by aggregating multiple fuzzy cognitive maps
por: Yu, Tianming, et al.
Publicado: (2021) -
Fuzzy Clustering Stability Evaluation of Time Series
por: Klassen, Gerhard, et al.
Publicado: (2020)