Cargando…
Dynamic transfer learning with progressive meta-task scheduler
Dynamic transfer learning refers to the knowledge transfer from a static source task with adequate label information to a dynamic target task with little or no label information. However, most existing theoretical studies and practical algorithms of dynamic transfer learning assume that the target t...
Autores principales: | Wu, Jun, He, Jingrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669596/ https://www.ncbi.nlm.nih.gov/pubmed/36407326 http://dx.doi.org/10.3389/fdata.2022.1052972 |
Ejemplares similares
-
Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future
por: Fu, Dongqi, et al.
Publicado: (2022) -
Misc-GAN: A Multi-scale Generative Model for Graphs
por: Zhou, Dawei, et al.
Publicado: (2019) -
Location Prediction for Tweets
por: Huang, Chieh-Yang, et al.
Publicado: (2019) -
Contagion Dynamics for Manifold Learning
por: Mahler, Barbara I.
Publicado: (2022) -
Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms
por: Danso, Samuel O., et al.
Publicado: (2021)