Cargando…

Nanoplasmonic Avidity-Based Detection and Quantification of IgG Aggregates

[Image: see text] Production of therapeutic monoclonal antibodies (mAbs) is a complex process that requires extensive analytical and bioanalytical characterization to ensure high and consistent product quality. Aggregation of mAbs is common and very problematic and can result in products with altere...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Thuy, Martinsson, Erik, Vargas, Sergio, Lundström, Ingemar, Mandenius, Carl-Fredrik, Aili, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670026/
https://www.ncbi.nlm.nih.gov/pubmed/36318700
http://dx.doi.org/10.1021/acs.analchem.2c03446
Descripción
Sumario:[Image: see text] Production of therapeutic monoclonal antibodies (mAbs) is a complex process that requires extensive analytical and bioanalytical characterization to ensure high and consistent product quality. Aggregation of mAbs is common and very problematic and can result in products with altered pharmacodynamics and pharmacokinetics and potentially increased immunogenicity. Rapid detection of aggregates, however, remains very challenging using existing analytical techniques. Here, we show a real-time and label-free fiber optical nanoplasmonic biosensor system for specific detection and quantification of immunoglobulin G (IgG) aggregates exploiting Protein A-mediated avidity effects. Compared to monomers, IgG aggregates were found to have substantially higher apparent affinity when binding to Protein A-functionalized sensor chips in a specific pH range (pH 3.8–4.0). Under these conditions, aggregates and monomers showed significantly different binding and dissociation kinetics. Reliable and rapid aggregate quantification was demonstrated with a limit of detection (LOD) and limit of quantification (LOQ) of about 9 and 30 μg/mL, respectively. Using neural network-based curve fitting, it was further possible to simultaneously quantify monomers and aggregates for aggregate concentrations lower than 30 μg/mL. Our work demonstrates a unique avidity-based biosensor approach for fast aggregate analysis that can be used for rapid at-line quality control, including lot/batch release testing. This technology can also likely be further optimized for real-time in-line monitoring of product titers and quality, facilitating process intensification and automation.