Cargando…
Novel quantitative electroencephalogram feature image adapted for deep learning: Verification through classification of Alzheimer’s disease dementia
Quantitative electroencephalography (QEEG) analysis is commonly adopted for the investigation of various neurological disorders, revealing electroencephalogram (EEG) features associated with specific dysfunctions. Conventionally, topographies are widely utilized for spatial representation of EEG cha...
Autores principales: | Jeong, Taegyun, Park, Ukeob, Kang, Seung Wan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670114/ https://www.ncbi.nlm.nih.gov/pubmed/36408393 http://dx.doi.org/10.3389/fnins.2022.1033379 |
Ejemplares similares
-
Quantitative Electroencephalogram Standardization: A Sex- and Age-Differentiated Normative Database
por: Ko, Juhee, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Differences in Multimodal Electroencephalogram and Clinical Correlations Between Early-Onset Alzheimer’s Disease and Frontotemporal Dementia
por: Lin, Nan, et al.
Publicado: (2021) -
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
por: Feng, Jin, et al.
Publicado: (2022) -
Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification
por: Shi, Bin, et al.
Publicado: (2022)