Cargando…
Kidney ion handling genes and their interaction in blood pressure control
Hypertension affects 30% of adults and is the leading risk factor for cardiovascular disease. Kidney sodium reabsorption plays a vital role in the initial stage and development of essential hypertension. It has been extensively reported that the variants of kidney ion handling genes are associated t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670246/ https://www.ncbi.nlm.nih.gov/pubmed/36305246 http://dx.doi.org/10.1042/BSR20220977 |
_version_ | 1784832292359766016 |
---|---|
author | An, Caiyan Yang, Liuyi Han, Tengfei Song, Huazhong Li, Zichao Zhang, Junjing Zhang, Kejin |
author_facet | An, Caiyan Yang, Liuyi Han, Tengfei Song, Huazhong Li, Zichao Zhang, Junjing Zhang, Kejin |
author_sort | An, Caiyan |
collection | PubMed |
description | Hypertension affects 30% of adults and is the leading risk factor for cardiovascular disease. Kidney sodium reabsorption plays a vital role in the initial stage and development of essential hypertension. It has been extensively reported that the variants of kidney ion handling genes are associated to blood pressure, and clinical features of hypertension. However, the underlying mechanisms by which these variants alter protein function are rarely summarized. In addition, the variation of one single gene is often limited to induce a significant effect on blood pressure. In the past few decades, the influence by genes × genes (G × G) and/or genotype × environment (G × E) interactions on a given trait, for example, blood pressure, have been widely considered, especially in studies on polygenic genetic traits. In the present review, we discuss the progress in genetics studies on kidney ion handling genes, encoding Na(+) channels (Na(+)-Cl(−) cotransporter [NCC], Na-K-2Cl cotransporter [NKCC2], epithelial Na(+) channels [ENaCs]), K(+) channel (renal outer medullary potassium channel [ROMK]), and Cl(−) channels (Pendrin, chloride voltage-gated channel Kb [CLC-Kb]), respectively, and their upstream kinases, WNKs and SGK1. We seek to clarify how these genes are involved in kidney sodium absorption and influence blood pressure, especially emphasizing the underlying mechanisms by which genetic variants alter protein functions and interaction in blood pressure regulation. The present review aims to enhance our understanding of the important role of kidney ion handling genes/channels in blood pressure control. |
format | Online Article Text |
id | pubmed-9670246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96702462022-11-29 Kidney ion handling genes and their interaction in blood pressure control An, Caiyan Yang, Liuyi Han, Tengfei Song, Huazhong Li, Zichao Zhang, Junjing Zhang, Kejin Biosci Rep Cardiovascular System & Vascular Biology Hypertension affects 30% of adults and is the leading risk factor for cardiovascular disease. Kidney sodium reabsorption plays a vital role in the initial stage and development of essential hypertension. It has been extensively reported that the variants of kidney ion handling genes are associated to blood pressure, and clinical features of hypertension. However, the underlying mechanisms by which these variants alter protein function are rarely summarized. In addition, the variation of one single gene is often limited to induce a significant effect on blood pressure. In the past few decades, the influence by genes × genes (G × G) and/or genotype × environment (G × E) interactions on a given trait, for example, blood pressure, have been widely considered, especially in studies on polygenic genetic traits. In the present review, we discuss the progress in genetics studies on kidney ion handling genes, encoding Na(+) channels (Na(+)-Cl(−) cotransporter [NCC], Na-K-2Cl cotransporter [NKCC2], epithelial Na(+) channels [ENaCs]), K(+) channel (renal outer medullary potassium channel [ROMK]), and Cl(−) channels (Pendrin, chloride voltage-gated channel Kb [CLC-Kb]), respectively, and their upstream kinases, WNKs and SGK1. We seek to clarify how these genes are involved in kidney sodium absorption and influence blood pressure, especially emphasizing the underlying mechanisms by which genetic variants alter protein functions and interaction in blood pressure regulation. The present review aims to enhance our understanding of the important role of kidney ion handling genes/channels in blood pressure control. Portland Press Ltd. 2022-11-16 /pmc/articles/PMC9670246/ /pubmed/36305246 http://dx.doi.org/10.1042/BSR20220977 Text en © 2022 The Author(s). https://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Cardiovascular System & Vascular Biology An, Caiyan Yang, Liuyi Han, Tengfei Song, Huazhong Li, Zichao Zhang, Junjing Zhang, Kejin Kidney ion handling genes and their interaction in blood pressure control |
title | Kidney ion handling genes and their interaction in blood pressure control |
title_full | Kidney ion handling genes and their interaction in blood pressure control |
title_fullStr | Kidney ion handling genes and their interaction in blood pressure control |
title_full_unstemmed | Kidney ion handling genes and their interaction in blood pressure control |
title_short | Kidney ion handling genes and their interaction in blood pressure control |
title_sort | kidney ion handling genes and their interaction in blood pressure control |
topic | Cardiovascular System & Vascular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670246/ https://www.ncbi.nlm.nih.gov/pubmed/36305246 http://dx.doi.org/10.1042/BSR20220977 |
work_keys_str_mv | AT ancaiyan kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol AT yangliuyi kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol AT hantengfei kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol AT songhuazhong kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol AT lizichao kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol AT zhangjunjing kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol AT zhangkejin kidneyionhandlinggenesandtheirinteractioninbloodpressurecontrol |