Cargando…
Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation
PURPOSE: Applying machine learning techniques to magnetic resonance diffusion-weighted imaging (DWI) data is challenging due to the size of individual data samples and the lack of labeled data. It is possible, though, to learn general patterns from a very limited amount of training data if we take a...
Autores principales: | Liu, Renfei, Lauze, François, Erleben, Kenny, Berg, Rune W., Darkner, Sune |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670506/ https://www.ncbi.nlm.nih.gov/pubmed/36405814 http://dx.doi.org/10.1117/1.JMI.9.6.064002 |
Ejemplares similares
-
Transfer learning for data‐efficient abdominal muscle segmentation with convolutional neural networks
por: McSweeney, Dónal M., et al.
Publicado: (2022) -
Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification
por: Jansen, Mariëlle J. A., et al.
Publicado: (2020) -
Collision-constrained deformable image registration framework for discontinuity management
por: Alscher, Thomas, et al.
Publicado: (2023) -
Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks
por: Rahkonen, Samuli, et al.
Publicado: (2020) -
Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network
por: Minnema, Jordi, et al.
Publicado: (2019)