Cargando…

Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level

Physical distancing and contact tracing are two key components in controlling the COVID-19 epidemics. Understanding their interaction at local level is important for policymakers. We propose a flexible modeling framework to assess the effect of combining contact tracing with different physical dista...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guan-Jhou, Palmer, John R.B., Bartumeus, Frederic, Alba-Casals, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670679/
https://www.ncbi.nlm.nih.gov/pubmed/36411772
http://dx.doi.org/10.1016/j.idm.2022.11.001
_version_ 1784832383520866304
author Chen, Guan-Jhou
Palmer, John R.B.
Bartumeus, Frederic
Alba-Casals, Ana
author_facet Chen, Guan-Jhou
Palmer, John R.B.
Bartumeus, Frederic
Alba-Casals, Ana
author_sort Chen, Guan-Jhou
collection PubMed
description Physical distancing and contact tracing are two key components in controlling the COVID-19 epidemics. Understanding their interaction at local level is important for policymakers. We propose a flexible modeling framework to assess the effect of combining contact tracing with different physical distancing strategies. Using scenario tree analyses, we compute the probability of COVID-19 detection using passive surveillance, with and without contact tracing, in metropolitan Barcelona. The estimates of detection probability and the frequency of daily social contacts are fitted into an age-structured susceptible-exposed-infectious-recovered compartmental model to simulate the epidemics considering different physical distancing scenarios over a period of 26 weeks. With the original Wuhan strain, the probability of detecting an infected individual without implementing physical distancing would have been 0.465, 0.515, 0.617, and 0.665 in designated age groups (0–14, 15–49, 50–64, and >65), respectively. As the physical distancing measures were reinforced and the disease circulation decreased, the interaction between the two interventions resulted in a reduction of the detection probabilities; however, despite this reduction, active contact tracing and isolation remained an effective supplement to physical distancing. If we relied solely on passive surveillance for diagnosing COVID-19, the model required a minimal 50% (95% credible interval, 39–69%) reduction of daily social contacts to keep the infected population under 5%, as compared to the 36% (95% credible interval, 22–56%) reduction with contact tracing systems. The simulation with the B.1.1.7 and B.1.167.2 strains shows similar results. Our simulations showed that a functioning contact tracing program would reduce the need for physical distancing and mitigate the COVID-19 epidemics.
format Online
Article
Text
id pubmed-9670679
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-96706792022-11-17 Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level Chen, Guan-Jhou Palmer, John R.B. Bartumeus, Frederic Alba-Casals, Ana Infect Dis Model Article Physical distancing and contact tracing are two key components in controlling the COVID-19 epidemics. Understanding their interaction at local level is important for policymakers. We propose a flexible modeling framework to assess the effect of combining contact tracing with different physical distancing strategies. Using scenario tree analyses, we compute the probability of COVID-19 detection using passive surveillance, with and without contact tracing, in metropolitan Barcelona. The estimates of detection probability and the frequency of daily social contacts are fitted into an age-structured susceptible-exposed-infectious-recovered compartmental model to simulate the epidemics considering different physical distancing scenarios over a period of 26 weeks. With the original Wuhan strain, the probability of detecting an infected individual without implementing physical distancing would have been 0.465, 0.515, 0.617, and 0.665 in designated age groups (0–14, 15–49, 50–64, and >65), respectively. As the physical distancing measures were reinforced and the disease circulation decreased, the interaction between the two interventions resulted in a reduction of the detection probabilities; however, despite this reduction, active contact tracing and isolation remained an effective supplement to physical distancing. If we relied solely on passive surveillance for diagnosing COVID-19, the model required a minimal 50% (95% credible interval, 39–69%) reduction of daily social contacts to keep the infected population under 5%, as compared to the 36% (95% credible interval, 22–56%) reduction with contact tracing systems. The simulation with the B.1.1.7 and B.1.167.2 strains shows similar results. Our simulations showed that a functioning contact tracing program would reduce the need for physical distancing and mitigate the COVID-19 epidemics. KeAi Publishing 2022-11-17 /pmc/articles/PMC9670679/ /pubmed/36411772 http://dx.doi.org/10.1016/j.idm.2022.11.001 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Chen, Guan-Jhou
Palmer, John R.B.
Bartumeus, Frederic
Alba-Casals, Ana
Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level
title Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level
title_full Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level
title_fullStr Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level
title_full_unstemmed Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level
title_short Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level
title_sort modeling the impact of surveillance activities combined with physical distancing interventions on covid-19 epidemics at a local level
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670679/
https://www.ncbi.nlm.nih.gov/pubmed/36411772
http://dx.doi.org/10.1016/j.idm.2022.11.001
work_keys_str_mv AT chenguanjhou modelingtheimpactofsurveillanceactivitiescombinedwithphysicaldistancinginterventionsoncovid19epidemicsatalocallevel
AT palmerjohnrb modelingtheimpactofsurveillanceactivitiescombinedwithphysicaldistancinginterventionsoncovid19epidemicsatalocallevel
AT bartumeusfrederic modelingtheimpactofsurveillanceactivitiescombinedwithphysicaldistancinginterventionsoncovid19epidemicsatalocallevel
AT albacasalsana modelingtheimpactofsurveillanceactivitiescombinedwithphysicaldistancinginterventionsoncovid19epidemicsatalocallevel