Cargando…

iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides

[Image: see text] Antimalarial peptides (AMAPs) varying in length, amino acid composition, charge, conformational structure, hydrophobicity, and amphipathicity reflect their diversity in antimalarial mechanisms. Due to the worldwide major health problem concerning antimicrobial resistance, these pep...

Descripción completa

Detalles Bibliográficos
Autores principales: Charoenkwan, Phasit, Schaduangrat, Nalini, Lio, Pietro, Moni, Mohammad Ali, Chumnanpuen, Pramote, Shoombuatong, Watshara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670693/
https://www.ncbi.nlm.nih.gov/pubmed/36406571
http://dx.doi.org/10.1021/acsomega.2c04465
Descripción
Sumario:[Image: see text] Antimalarial peptides (AMAPs) varying in length, amino acid composition, charge, conformational structure, hydrophobicity, and amphipathicity reflect their diversity in antimalarial mechanisms. Due to the worldwide major health problem concerning antimicrobial resistance, these peptides possess great therapeutic value owing to their low incidences of drug resistance as compared to conventional antibiotics. Although well-known experimental methods are able to precisely determine the antimalarial activity of peptides, these methods are still time-consuming and costly. Thus, machine learning (ML)-based methods that are capable of identifying AMAPs rapidly by using only sequence information would be beneficial for the high-throughput identification of AMAPs. In this study, we propose the first computational model (termed iAMAP-SCM) for the large-scale identification and characterization of peptides with antimalarial activity by using only sequence information. Specifically, we employed an interpretable scoring card method (SCM) to develop iAMAP-SCM and estimate propensities of 20 amino acids and 400 dipeptides to be AMAPs in a supervised manner. Experimental results showed that iAMAP-SCM could achieve a maximum accuracy and Matthew’s coefficient correlation of 0.957 and 0.834, respectively, on the independent test dataset. In addition, SCM-derived propensities of 20 amino acids and selected physicochemical properties were used to provide an understanding of the functional mechanisms of AMAPs. Finally, a user-friendly online computational platform of iAMAP-SCM is publicly available at http://pmlabstack.pythonanywhere.com/iAMAP-SCM. The iAMAP-SCM predictor is anticipated to assist experimental scientists in the high-throughput identification of potential AMAP candidates for the treatment of malaria and other clinical applications.